找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Xiankun Zhang,Qinhu Zhang Conference proce

[复制链接]
楼主: Lampoon
发表于 2025-3-23 10:36:19 | 显示全部楼层
发表于 2025-3-23 14:35:43 | 显示全部楼层
发表于 2025-3-23 19:37:28 | 显示全部楼层
L. Claes,C. Burri,R. Neugebauer,U. Gruberstems based on social network graphs. Combining social network graphs with user-item graphs can capture dynamic preference features, achieving more accurate recommendations. However, user behavioral data often contains noise and is sparse, which may result in suboptimal model performance. To address
发表于 2025-3-24 00:41:30 | 显示全部楼层
发表于 2025-3-24 05:41:33 | 显示全部楼层
发表于 2025-3-24 07:02:09 | 显示全部楼层
发表于 2025-3-24 12:16:18 | 显示全部楼层
发表于 2025-3-24 16:18:54 | 显示全部楼层
发表于 2025-3-24 22:55:41 | 显示全部楼层
L. Claes,C. Burri,R. Neugebauer,U. Grubere opportunity to fully leverage pre-trained knowledge from single-pass models. This practice leads to increased training cost and complexity. In this paper, we propose a unified two-pass decoding framework comprising three core modules: a pre-trained Visual Encoder, a pre-trained Draft Decoder, and
发表于 2025-3-24 23:38:23 | 显示全部楼层
L. Claes,C. Burri,R. Neugebauer,U. Gruberations from text. This task has become challenging when dealing with complex sentences that encompass overlapping sub-events. To address this issue, we propose a novel ontology-aware neural approach for extracting overlapping events. Our approach consists of an Ontology-Aware Semantic Encoder (OASE)
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-6 15:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表