找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Zhanjun Si,Yijie Pan Conference proceeding

[复制链接]
楼主: HABIT
发表于 2025-3-30 11:19:45 | 显示全部楼层
发表于 2025-3-30 13:39:39 | 显示全部楼层
发表于 2025-3-30 19:13:49 | 显示全部楼层
https://doi.org/10.1007/978-3-642-91992-3tion of key information within the graph. Additionally, our Graph Contrastive Learning (GCL) method uniquely eliminates the need for pre-graph augmentation and avoids the requirement of two additional forward trainings in each mini-batch. We name our proposed method MDGCL. Experiments on three publi
发表于 2025-3-30 20:59:33 | 显示全部楼层
https://doi.org/10.1007/978-3-322-82433-2opological fusion structures. The paper conducts analyses and summarizes the mechanisms of these two types of structures, introduced the evaluation dataset and evaluation indicators, accompanied by a collation of open-source codes for mainstream feature fusion architectures. Ultimately, through syst
发表于 2025-3-31 03:10:12 | 显示全部楼层
Variabilität – Ohne Vielfalt keine Evolutionntroduced into the model. Meanwhile, to overcome the issue of excessively long training time for lightweight models, a novel iterative training strategy is proposed to fully unleash the potential of EfficientPose. To validate the effectiveness of EfficientPose model, extensive comparative experiment
发表于 2025-3-31 06:41:52 | 显示全部楼层
Variabilität – Ohne Vielfalt keine Evolutionenrich semantic representation. Experimental results demonstrate that compared to the baseline model, DFL-NER achieves F1-score improvements of 7.14%, 0.37%, and 1.81% on the Weibo, Resume, and MSRA datasets, respectively, showcasing outstanding performance.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 22:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表