找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Attractors Under Discretisation; Xiaoying Han,Peter Kloeden Book 2017 The Author(s) 2017 One step numerical schemes.Autonomous dynamicl sy

[复制链接]
楼主: 古生物学
发表于 2025-3-23 11:48:24 | 显示全部楼层
发表于 2025-3-23 17:48:11 | 显示全部楼层
Produktdesign: Materialeigenschaften,Saddle points for Euler schemes for ODEs are discussed. Numerical stable and unstable manifolds are illustrated through a set of examples, and compared to the stable and unstable manifolds of the ODEs. The shadowing phenomenon is briefly illustrated. Finally, Beyn’s Theorem is presented.
发表于 2025-3-23 19:21:14 | 显示全部楼层
Ram K. Mishra,Glen B. Baker,Alan A. BoultonEuler schemes for dissipative ODE systems with attractors are presented and shown to possess numerical attractors that converge to the ODE attractors upper semi continuously. A counterexample shows that the numerical attractor need not convergence lower semi continuously.
发表于 2025-3-23 22:21:50 | 显示全部楼层
发表于 2025-3-24 04:03:18 | 显示全部楼层
发表于 2025-3-24 09:56:12 | 显示全部楼层
Stephanie J. Walker,H. Alex BrownNonautonomous dynamical systems and their omega limit sets are defined. The concepts of positive and negative asymptotic invariance are defined. The omega limit sets for dissipative nonautonomous dynamical systems are shown to be positive and negative asymptotic invariant under certain conditions.
发表于 2025-3-24 12:48:07 | 显示全部楼层
https://doi.org/10.1385/1592594301Numerical nonautonomous omega limit sets for nonautonomous ODEs are constructed by using the implicit Euler scheme and shown to converge to the omega limit sets for the ODEs upper semi continuously.
发表于 2025-3-24 17:57:23 | 显示全部楼层
发表于 2025-3-24 21:54:44 | 显示全部楼层
Patricia M. Hinkle,John A. PuskasPullback and forward attractors for skew product flows are introduced, then the implicit Euler numerical scheme is applied to obtain a discrete time skew product flow. Existence of a numerical attractor for this discrete time skew product flow is established for sufficiently small step size.
发表于 2025-3-25 00:29:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 23:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表