找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains; Volume I Vladimir Maz’ya,Serguei Nazarov,Boris A. Pl

[复制链接]
楼主: monster
发表于 2025-3-27 00:18:38 | 显示全部楼层
发表于 2025-3-27 02:42:10 | 显示全部楼层
On the Expressiveness and Complexity of ,onsider eigenvalues of polynomial operator pencils from the same point of view. Such problems arise in a natural way when we investigate singularities of solutions of boundary value problems in domains with conic points.
发表于 2025-3-27 06:54:53 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-8434-1Boundary value problem; Eigenvalue; Laplace operator; Partial differential equations; differential equat
发表于 2025-3-27 10:08:36 | 显示全部楼层
978-3-0348-9565-1Birkh�user Verlag 2000
发表于 2025-3-27 15:06:16 | 显示全部楼层
发表于 2025-3-27 20:50:48 | 显示全部楼层
发表于 2025-3-28 01:41:00 | 显示全部楼层
发表于 2025-3-28 03:19:50 | 显示全部楼层
Asymptotic Behaviour of Energy Integrals for Small Perturbations of the Boundary Near Corners and Iss in smoothing of the boundary in a neighborhood of the singularity, and in the second case the isolated point is transformed into a small hole. Our aim is to derive and to justify mathematically asymptotic formulas for energy functionals applied to boundary value problems for systems which are elliptic in the sense of Douglis-Nirenberg.
发表于 2025-3-28 08:25:26 | 显示全部楼层
发表于 2025-3-28 11:02:56 | 显示全部楼层
Homogeneous Solutions of Boundary Value Problems in the Exterior of a Thin Coneonsider eigenvalues of polynomial operator pencils from the same point of view. Such problems arise in a natural way when we investigate singularities of solutions of boundary value problems in domains with conic points.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 10:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表