找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Asymptotic Statistical Inference; A Basic Course Using Shailaja Deshmukh,Madhuri Kulkarni Textbook 2021 The Editor(s) (if applicable) and T

[复制链接]
楼主: 不能平庸
发表于 2025-3-23 11:35:20 | 显示全部楼层
发表于 2025-3-23 14:45:02 | 显示全部楼层
发表于 2025-3-23 20:59:41 | 显示全部楼层
发表于 2025-3-24 00:24:46 | 显示全部楼层
Textbook 2021s for contingency tables. The book also discusses a score test and Wald’s test, their relationship with the likelihood ratio test and Karl Pearson’s chi-square test. An important finding is that, while testing any hypothesis about the parameters of a multinomial distribution, a score test statistic
发表于 2025-3-24 06:21:39 | 显示全部楼层
发表于 2025-3-24 08:02:32 | 显示全部楼层
and computational exercises based on R, and MCQs to clarify.The book presents the fundamental concepts from asymptotic statistical inference theory, elaborating on some basic large sample optimality properties of estimators and some test procedures. The most desirable property of consistency of an
发表于 2025-3-24 11:00:39 | 显示全部楼层
Shailaja Deshmukh,Madhuri KulkarniPresents fundamental concepts from asymptotic statistical inference theory, illustrated by R software.Contains numerous examples, conceptual and computational exercises based on R, and MCQs to clarify
发表于 2025-3-24 18:55:58 | 显示全部楼层
发表于 2025-3-24 22:01:03 | 显示全部楼层
https://doi.org/10.1007/978-1-4302-0377-3 distribution with some illustrations as it is basic to all statistical inference procedures and data analysis. An estimator . is defined as a Borel measurable function from the sample space to the parameter space. In the present book, the focus is on the discussion of large sample optimality proper
发表于 2025-3-25 02:52:10 | 显示全部楼层
Neil Daswani,Christoph Kern,Anita Kesavan to . using various modes of convergence. The most frequently investigated large sample property of an estimator is weak consistency. Weak consistency of an estimator is defined in terms of convergence in probability. We examine how close the estimator is to the true parameter value in terms of prob
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 19:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表