用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Asymptotic Statistical Inference; A Basic Course Using Shailaja Deshmukh,Madhuri Kulkarni Textbook 2021 The Editor(s) (if applicable) and T

[复制链接]
查看: 51383|回复: 39
发表于 2025-3-21 18:38:53 | 显示全部楼层 |阅读模式
期刊全称Asymptotic Statistical Inference
期刊简称A Basic Course Using
影响因子2023Shailaja Deshmukh,Madhuri Kulkarni
视频video
发行地址Presents fundamental concepts from asymptotic statistical inference theory, illustrated by R software.Contains numerous examples, conceptual and computational exercises based on R, and MCQs to clarify
图书封面Titlebook: Asymptotic Statistical Inference; A Basic Course Using Shailaja Deshmukh,Madhuri Kulkarni Textbook 2021 The Editor(s) (if applicable) and T
影响因子.The book presents the fundamental concepts from asymptotic statistical inference theory, elaborating on some basic large sample optimality properties of estimators and some test procedures. The most desirable property of consistency of an estimator and its large sample distribution, with suitable normalization, are discussed, the focus being on the consistent and asymptotically normal (CAN) estimators. It is shown that for the probability models belonging to an exponential family and a Cramer family, the maximum likelihood estimators of the indexing parameters are CAN. The book describes some large sample test procedures, in particular, the most frequently used likelihood ratio test procedure. Various applications of the likelihood ratio test procedure are addressed, when the underlying probability model is a multinomial distribution. These include tests for the goodness of fit and tests for contingency tables. The book also discusses a score test and Wald’s test, their relationship with the likelihood ratio test and Karl Pearson’s chi-square test. An important finding is that, while testing any hypothesis about the parameters of a multinomial distribution, a score test statistic
Pindex Textbook 2021
1 Front Matter
Abstract
2 ,Introduction, Shailaja Deshmukh,Madhuri Kulkarni
Abstract
3 ,Consistency of an Estimator, Shailaja Deshmukh,Madhuri Kulkarni
Abstract
4 ,Consistent and Asymptotically Normal Estimators, Shailaja Deshmukh,Madhuri Kulkarni
Abstract
5 ,CAN Estimators in Exponential and Cramér Families, Shailaja Deshmukh,Madhuri Kulkarni
Abstract
6 ,Large Sample Test Procedures, Shailaja Deshmukh,Madhuri Kulkarni
Abstract
7 ,Goodness of Fit Test and Tests for Contingency Tables, Shailaja Deshmukh,Madhuri Kulkarni
Abstract
8 ,Solutions to Conceptual Exercises, Shailaja Deshmukh,Madhuri Kulkarni
Abstract
9 Back Matter
Abstract
书目名称Asymptotic Statistical Inference影响因子(影响力)




书目名称Asymptotic Statistical Inference影响因子(影响力)学科排名




书目名称Asymptotic Statistical Inference网络公开度




书目名称Asymptotic Statistical Inference网络公开度学科排名




书目名称Asymptotic Statistical Inference被引频次




书目名称Asymptotic Statistical Inference被引频次学科排名




书目名称Asymptotic Statistical Inference年度引用




书目名称Asymptotic Statistical Inference年度引用学科排名




书目名称Asymptotic Statistical Inference读者反馈




书目名称Asymptotic Statistical Inference读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:32:01 | 显示全部楼层
发表于 2025-3-22 04:16:06 | 显示全部楼层
发表于 2025-3-22 07:59:52 | 显示全部楼层
https://doi.org/10.1007/978-1-4302-0377-3mple inference theory, in particular, to construct large sample confidence intervals and approximating the distribution of test statistic in large sample test procedures. We discuss variance stabilization technique and studentization technique to construct large sample confidence intervals. In Sects
发表于 2025-3-22 11:46:43 | 显示全部楼层
发表于 2025-3-22 13:55:26 | 显示全部楼层
发表于 2025-3-22 17:59:23 | 显示全部楼层
发表于 2025-3-22 22:40:59 | 显示全部楼层
Introduction,close it is to . using various modes of convergence. For ready reference, some modes of convergence are defined and various related results are listed in Sect. 1.3. The novelty of the book is use of . software to illustrate various concepts from asymptotic inference. The last section of every chapte
发表于 2025-3-23 01:44:08 | 显示全部楼层
发表于 2025-3-23 06:55:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-29 18:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表