找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Asymptotic Characteristics of Entire Functions and Their Applications in Mathematics and Biophysics; L. S. Maergoiz Book 2003Latest editio

[复制链接]
楼主: injurious
发表于 2025-3-23 13:01:33 | 显示全部楼层
Klaus-Dieter Schewe,Bernhard Thalheim sign. In particular, it will be shown that in the case of a finite indicator . of general form the locally convex arc Γ. (see Def. 1.9.24) associated with . is the image of a closed Jordan arc . ⊂ ℂ under a mapping of the form
发表于 2025-3-23 14:46:16 | 显示全部楼层
发表于 2025-3-23 21:03:03 | 显示全部楼层
发表于 2025-3-24 02:13:15 | 显示全部楼层
Xudong Liu,Miroslaw Truszczynskimaximum .. of its modulus, the maximal term .., the Nevanlinna characteristic .(., .),etc. These functions and the logarithms of the first two belong to the class U (see Property 6.1.2); so, the results of Chapter 6 are applicable. For instance, the growth scales for the classes M. and N. considered
发表于 2025-3-24 03:14:20 | 显示全部楼层
发表于 2025-3-24 08:26:10 | 显示全部楼层
Mathematics and Its Applicationshttp://image.papertrans.cn/b/image/163792.jpg
发表于 2025-3-24 14:45:23 | 显示全部楼层
Flavio A. Ferrarotti,José M. Turull TorresLet A = {φ(t)} be the class of nonnegative monotone nondecreasing functions defined on the semiaxis . ≥ 0. We consider basic concepts associated with the simplest growth scale for Λ (a . is a set of functions, which are used to measure the growth).
发表于 2025-3-24 17:05:53 | 显示全部楼层
发表于 2025-3-24 21:14:36 | 显示全部楼层
A Method of Identifying Homeostasis Relaxation Characteristics,stem parameters (“variables”) after an external impact. Provided the changes in the systems are not pathological, the variables either regain their original levels or pass to new (adaptation) levels. A glowing example of this is homeostasis systems of living organisms. It is well known that homeosta
发表于 2025-3-25 02:49:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 05:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表