找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Asymptotic Analysis; From Theory to Appli Ferdinand Verhulst Conference proceedings 1979 Springer-Verlag Berlin Heidelberg 1979 Analysis.As

[复制链接]
楼主: Denial
发表于 2025-3-25 07:02:26 | 显示全部楼层
发表于 2025-3-25 09:45:19 | 显示全部楼层
Mark E. Stahl,Ronald P. Bianchini Jr.here and the nonlinear inertial terms are assumed to be negligible. After vertical integration this leads to a boundary value problem for the transport stream function which is of singular perturbation type..Particular attention has been paid to the influence of the shape of the ocean boundaries on
发表于 2025-3-25 11:52:02 | 显示全部楼层
Paris C. Kanellakis,Alex A. Shvartsmanll and large amplitude oscillations. A more extensive analysis is given for the case where one of the equations contains a small parameter. Our analysis of such a singularly perturbed type of Volterra-Lotka system leads to an asymptotic formula of the period for oscillations with moderate and large
发表于 2025-3-25 18:27:05 | 显示全部楼层
Adaptive System-Level Diagnosis in Real-Timeed by the multiple time scales method when the mass decay is exponential. In other cases of mass decay this method breaks down and we use the method of matched asymptotic expansions or an integral equation method. Starting with the same initial orbits and ejecting the same amount of mass, the result
发表于 2025-3-25 22:50:25 | 显示全部楼层
发表于 2025-3-26 00:32:06 | 显示全部楼层
发表于 2025-3-26 07:45:07 | 显示全部楼层
发表于 2025-3-26 12:32:27 | 显示全部楼层
Bifurcation analysis of a non linear free boundary problem from plasma physics,on-) linear elliptic PDE on each subdomain, as well as matching conditions on the interface. Starting with a one parameter family of known solutions we give a criterion to find bifurcation points and we analyse the bifurcating solutions. An important field of applications of this technique is the theory of confined plasmas.
发表于 2025-3-26 13:56:29 | 显示全部楼层
发表于 2025-3-26 20:06:34 | 显示全部楼层
Asymptotic Analysis978-3-540-35332-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 05:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表