找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Associative Digital Network Theory; An Associative Algeb Nico F. Benschop Book Apr 2009Latest edition Springer Science+Business Media B.V.

[复制链接]
楼主: FARCE
发表于 2025-3-28 17:00:32 | 显示全部楼层
https://doi.org/10.1007/3-540-36135-9idues mod .. with ‘carry’ .<.. of weight .. yields a Euclidean prime sieve for integers. Failure of Goldbach’s Conjecture (.) for some 2. contradicts .(.) for some ., yielding .: Each 2.>4 is the sum of two odd primes.
发表于 2025-3-28 21:53:29 | 显示全部楼层
发表于 2025-3-29 01:07:06 | 显示全部楼层
Simple Semigroups and the Five Basic Machines,ch input and input-sequence maps the state set onto the same number of next states. CR-machines are analysed by their sequential closure (semigroup), which is shown to be a ., that is: a semi-direct product . |>(.×.) of a left- and a right-copy semigroup, and a group. So in general a CR-machine is a
发表于 2025-3-29 06:18:20 | 显示全部楼层
发表于 2025-3-29 10:46:27 | 显示全部楼层
发表于 2025-3-29 13:06:34 | 显示全部楼层
发表于 2025-3-29 19:25:59 | 显示全部楼层
发表于 2025-3-29 21:47:19 | 显示全部楼层
,Fermat’s Small Theorem Extended to ,,mod ,,,. are shown to have distinct .. mod .., and divisors . of .−1 (resp. .+1) with different primesets have distinct .. mod ... Moreover 2.≢2  mod .. for prime ., related to . primes (Wieferich in J. Reine Angew. Math. 136:293–302, .) and . case. for integers (Chap. 8). .: Some .|.±1 is semi primitive r
发表于 2025-3-30 02:16:54 | 显示全部楼层
发表于 2025-3-30 05:32:32 | 显示全部楼层
,Additive Structure of ,(.) mod ,, (Squarefree) and Goldbach’s Conjecture, All primes between .. and .. are in the group .. of units in semigroup . of multiplication mod ... Due to its squarefree modulus . is a disjoint union of 2. groups, with as many idempotents—one per divisor of .., which form a Boolean lattice .. The . properties of . and its lattice are studied. It
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-5 12:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表