找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks in Pattern Recognition; 6th IAPR TC 3 Intern Neamat Gayar,Friedhelm Schwenker,Cheng Suen Conference proceedings

[复制链接]
楼主: LANK
发表于 2025-3-26 22:30:26 | 显示全部楼层
https://doi.org/10.1007/978-3-319-11656-3classification; feature selection; information extraction; kernel methods; learning algorithms; machine l
发表于 2025-3-27 03:15:59 | 显示全部楼层
发表于 2025-3-27 05:20:08 | 显示全部楼层
发表于 2025-3-27 11:55:32 | 显示全部楼层
https://doi.org/10.1007/978-3-030-00051-6In this paper we investigate reinforcement learning approaches for the popular computer game .. User-defined reward functions have been applied to .(0) learning based on .-greedy strategies in the standard Tetris scenario. The numerical experiments show that reinforcement learning can significantly outperform agents utilizing fixed policies.
发表于 2025-3-27 14:11:35 | 显示全部楼层
发表于 2025-3-27 18:49:08 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/b/image/162685.jpg
发表于 2025-3-28 01:51:56 | 显示全部楼层
Artificial Neural Networks in Pattern Recognition978-3-319-11656-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-28 02:58:30 | 显示全部楼层
Large Margin Distribution Learninghe . is a fundamental issue of SVMs, whereas recently the margin theory for Boosting has been defended, establishing a connection between these two mainstream approaches. The recent theoretical results disclosed that the . rather than a single margin is really crucial for the generalization performa
发表于 2025-3-28 06:34:48 | 显示全部楼层
发表于 2025-3-28 11:44:00 | 显示全部楼层
Unsupervised Active Learning of CRF Model for Cross-Lingual Named Entity Recognitionformation extraction systems. Active learning has been proven to be effective in reducing manual annotation efforts for supervised learning tasks where a human judge is asked to annotate the most informative examples with respect to a given model. However, in most cases reliable human judges are not
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 15:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表