找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[复制链接]
楼主: Hayes
发表于 2025-3-25 06:24:46 | 显示全部楼层
,K-Fold Cross-Valuation for Machine Learning Using Shapley Value,d and the volume of data, we propose the Monte Carlo permutation, incremental learning, and batch data valuation methodologies. This approach aids in approximating the true Shapley value as precisely as possible while simultaneously reducing computation time. Extensive experiments have demonstrated
发表于 2025-3-25 08:39:11 | 显示全部楼层
发表于 2025-3-25 14:28:54 | 显示全部楼层
发表于 2025-3-25 18:43:55 | 显示全部楼层
发表于 2025-3-25 23:31:05 | 显示全部楼层
,SS-Net: 3D Spatial-Spectral Network for Cerebrovascular Segmentation in TOF-MRA,bution patterns of cerebrovascular edges more effectively. Experimental results show that the SS-Net delivers outstanding performance, achieving the DSC of 71.14% on a publicly available dataset and outperforming other 3D deep-learning-based approaches. Code: github.com/y8421036/SS-Net.
发表于 2025-3-26 03:02:41 | 显示全部楼层
发表于 2025-3-26 07:22:28 | 显示全部楼层
,Style Expansion Without Forgetting for Handwritten Character Recognition,istillation and replay, CPA learns representative information by memorizing character-representative prototypes and augmenting them in new learning phases to better distinguish different characters when the replay data is limited, and SGM augments the prototypes in a reliable way to improves the rel
发表于 2025-3-26 10:29:14 | 显示全部楼层
发表于 2025-3-26 14:22:15 | 显示全部楼层
,UG-Net: Unsupervised-Guided Network for Biomedical Image Segmentation and Classification,ssification network for accurate classification. Moreover, a novel contextual encoding module is presented to capture high-level information and preserve spatial information. Meanwhile, a hybrid loss is defined to alleviate the imbalance training problem. Experimental results show that our approach
发表于 2025-3-26 19:21:08 | 显示全部楼层
,Visible-Infrared Person Re-identification via Modality Augmentation and Center Constraints,e modality discrepancy and, to some extent, alleviates the modality imbalance problem. In addition, based on the idea of partition, we design a fine-grained feature mining module (FFMM) to mine nuanced but discriminative information within each part, which is benefit to further alleviate the modalit
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 17:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表