找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[复制链接]
楼主: chondrocyte
发表于 2025-3-30 11:12:19 | 显示全部楼层
Artificial Neural Networks and Machine Learning – ICANN 2023978-3-031-44210-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-30 14:45:40 | 显示全部楼层
发表于 2025-3-30 17:35:21 | 显示全部楼层
发表于 2025-3-30 22:31:15 | 显示全部楼层
,A Lightweight Multi-Scale Large Kernel Attention Hierarchical Network for Single Image Deraining,. To address this issue, we propose a lightweight multi-scale large kernel attention hierarchical network(LMANet). Our approach combines multi-scale and Large Kernel Attention(LKA) to create Multi-Scale Large Kernel Attention (MSLKA), where large kernel decomposition can effectively decouple large k
发表于 2025-3-31 02:37:13 | 显示全部楼层
A Multi-scale Method for Cell Segmentation in Fluorescence Microscopy Images, expression and the study of cell function. Existing cell segmentation methods have drawbacks in terms of inaccurate location of segmentation boundary, misidentification, and inaccurate segmentation of overlapping cells. To address these issues, a novel . (MMCS) is proposed in this paper. Our motiva
发表于 2025-3-31 08:51:45 | 显示全部楼层
发表于 2025-3-31 11:07:52 | 显示全部楼层
发表于 2025-3-31 16:57:27 | 显示全部楼层
,An Improved Lightweight YOLOv5 for Remote Sensing Images,s, remains challenging due to the substantial computational demands of existing object detection models. In this paper, we propose an improved remote sensing image small object detection method based on YOLOv5. In order to preserve high-resolution features, we remove the Focus module from the YOLOv5
发表于 2025-3-31 18:42:24 | 显示全部楼层
An Improved YOLOv5 with Structural Reparameterization for Surface Defect Detection,g methods for detecting surface defects cannot meet the requirements in terms of speed and accuracy. Based on structural re-parameterization, coordinate attention (CA) mechanism, and an additional detection head, we propose an improved YOLOv5 model for detecting surface defects of steel plates. Firs
发表于 2025-4-1 00:46:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 05:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表