找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[复制链接]
查看: 54821|回复: 64
发表于 2025-3-21 17:53:20 | 显示全部楼层 |阅读模式
期刊全称Artificial Neural Networks and Machine Learning – ICANN 2023
期刊简称32nd International C
影响因子2023Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay
视频video
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe
影响因子.The 10-volume set LNCS 14254-14263 constitutes the proceedings of the 32nd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2023, which took place in Heraklion, Crete, Greece, during September 26–29, 2023..The 426 full papers, 9 short papers and 9 abstract papers included in these proceedings were carefully reviewed and selected from 947 submissions. ICANN is a dual-track conference, featuring tracks in brain inspired computing on the one hand, and machine learning on the other, with strong cross-disciplinary interactions and applications.  .
Pindex Conference proceedings 2023
The information of publication is updating

书目名称Artificial Neural Networks and Machine Learning – ICANN 2023影响因子(影响力)




书目名称Artificial Neural Networks and Machine Learning – ICANN 2023影响因子(影响力)学科排名




书目名称Artificial Neural Networks and Machine Learning – ICANN 2023网络公开度




书目名称Artificial Neural Networks and Machine Learning – ICANN 2023网络公开度学科排名




书目名称Artificial Neural Networks and Machine Learning – ICANN 2023被引频次




书目名称Artificial Neural Networks and Machine Learning – ICANN 2023被引频次学科排名




书目名称Artificial Neural Networks and Machine Learning – ICANN 2023年度引用




书目名称Artificial Neural Networks and Machine Learning – ICANN 2023年度引用学科排名




书目名称Artificial Neural Networks and Machine Learning – ICANN 2023读者反馈




书目名称Artificial Neural Networks and Machine Learning – ICANN 2023读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:54:56 | 显示全部楼层
Artificial Neural Networks and Machine Learning – ICANN 202332nd International C
发表于 2025-3-22 03:36:42 | 显示全部楼层
发表于 2025-3-22 05:18:38 | 显示全部楼层
New Directions in Welfare Historyonfusing classes can be increased by simply using label smoothing. Extensive experiments conducted on three popular fine-grained benchmarks demonstrate that we achieve . performance. Meanwhile, during the inference, our method requires less computational burden.
发表于 2025-3-22 10:56:27 | 显示全部楼层
https://doi.org/10.1007/978-3-031-26024-7inement network module (MrNet) to estimate the refined displacement map with features from different layers and different domains (i.e. coarse displacement images and RGB images). Finally, we design a novel normal smoothing loss that improves the reconstructed details and realisticity. Extensive exp
发表于 2025-3-22 14:55:52 | 显示全部楼层
发表于 2025-3-22 17:54:56 | 显示全部楼层
发表于 2025-3-22 23:27:47 | 显示全部楼层
发表于 2025-3-23 05:01:05 | 显示全部楼层
发表于 2025-3-23 06:49:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 01:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表