找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2020; 29th International C Igor Farkaš,Paolo Masulli,Stefan Wermter Conference proc

[复制链接]
楼主: 预兆前
发表于 2025-3-25 06:44:22 | 显示全部楼层
发表于 2025-3-25 10:32:04 | 显示全部楼层
Obstacles to Depth Compression of Neural Networks any algorithm achieving depth compression of neural networks. In particular, we show that depth compression is as hard as learning the input distribution, ruling out guarantees for most existing approaches. Furthermore, even when the input distribution is of a known, simple form, we show that there are no . algorithms for depth compression.
发表于 2025-3-25 15:32:09 | 显示全部楼层
Prediction Stability as a Criterion in Active Learningect of the former uncertainty-based methods. Experiments are made on CIFAR-10 and CIFAR-100, and the results indicates that prediction stability was effective and works well on fewer-labeled datasets. Prediction stability reaches the accuracy of traditional acquisition functions like entropy on CIFAR-10, and notably outperformed them on CIFAR-100.
发表于 2025-3-25 18:26:38 | 显示全部楼层
发表于 2025-3-25 20:57:06 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/b/image/162650.jpg
发表于 2025-3-26 01:23:41 | 显示全部楼层
https://doi.org/10.1007/978-3-030-61616-8artificial intelligence; classification; computational linguistics; computer networks; computer vision; i
发表于 2025-3-26 07:21:30 | 显示全部楼层
发表于 2025-3-26 11:01:47 | 显示全部楼层
Log-Nets: Logarithmic Feature-Product Layers Yield More Compact Networksions. Log-Nets are capable of surpassing the performance of traditional convolutional neural networks (CNNs) while using fewer parameters. Performance is evaluated on the Cifar-10 and ImageNet benchmarks.
发表于 2025-3-26 12:52:15 | 显示全部楼层
Artificial Neural Networks and Machine Learning – ICANN 2020978-3-030-61616-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-26 17:47:01 | 显示全部楼层
,Einführung von Fertigungsinseln,ions. Log-Nets are capable of surpassing the performance of traditional convolutional neural networks (CNNs) while using fewer parameters. Performance is evaluated on the Cifar-10 and ImageNet benchmarks.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 06:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表