找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks - ICANN 2008; 18th International C Véra Kůrková,Roman Neruda,Jan Koutník Conference proceedings 2008 Springer-Ve

[复制链接]
楼主: VER
发表于 2025-3-23 13:39:06 | 显示全部楼层
Improving the Learning Speed in 2-Layered LSTM Network by Estimating the Configuration of Hidden Unifor function approximation tasks. The motivation of this method is based on the behavior of the hidden units and the complexity of the function to be approximated. The results obtained for 1-D and 2-D functions show that the proposed methodology improves the network performance, stabilizing the trai
发表于 2025-3-23 17:31:51 | 显示全部楼层
发表于 2025-3-23 21:00:21 | 显示全部楼层
发表于 2025-3-23 22:53:55 | 显示全部楼层
OP-ELM: Theory, Experiments and a Toolboxgression and classification problems. The results are compared with widely known Multilayer Perceptron (MLP) and Least-Squares Support Vector Machine (LS-SVM) methods. As the experiments (regression and classification) demonstrate, the OP-ELM methodology is considerably faster than the MLP and the L
发表于 2025-3-24 06:05:50 | 显示全部楼层
发表于 2025-3-24 06:39:05 | 显示全部楼层
发表于 2025-3-24 12:47:35 | 显示全部楼层
Quadratically Constrained Quadratic Programming for Subspace Selection in Kernel Regression Estimatired models in the context of reproducing kernel Hilbert spaces. In this setting the task of input selection is converted into the task of selecting functional components depending on one (or more) inputs. In turn the process of learning with embedded selection of such components can be formalized as
发表于 2025-3-24 15:57:44 | 显示全部楼层
发表于 2025-3-24 19:15:37 | 显示全部楼层
Aus der Vorgeschichte des Zeppelins,We present a training method which adjusts the weights of the MLP (Multilayer Perceptron) to preserve the distance invariance in a low dimensional space. We apply visualization techniques to display the detailed representations of the trained neurons.
发表于 2025-3-25 00:08:28 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 00:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表