找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence in Radiation Therapy; First International Dan Nguyen,Lei Xing,Steve Jiang Conference proceedings 2019 Springer Nat

[复制链接]
楼主: 空隙
发表于 2025-3-28 18:30:00 | 显示全部楼层
Deriving Lung Perfusion Directly from CT Image Using Deep Convolutional Neural Network: A Preliminal imaging suffers from many shortcomings, including the need of exogenous contrasts, longer processing time, etc. In this study, we present a new approach to derive the lung functional images, using a deep convolutional neural network to learn and exploit the underlying functional information in the
发表于 2025-3-28 19:10:58 | 显示全部楼层
发表于 2025-3-29 00:00:21 | 显示全部楼层
发表于 2025-3-29 04:57:03 | 显示全部楼层
Dose Distribution Prediction for Optimal Treamtment of Modern External Beam Radiation Therapy for Nper proposes a new automatic method for predicting of dose distribution of Nasopharyngeal carcinoma (NPC) from contoured computer tomography (CT) images. The proposed method consists of two phases: (1) predicting the 2D optimal dose images of each beam from contoured CT images of a patient by convol
发表于 2025-3-29 09:11:35 | 显示全部楼层
发表于 2025-3-29 14:17:01 | 显示全部楼层
UC-GAN for MR to CT Image Synthesis,rsarial network (CycleGAN) is becoming an influential method, however, its image quality of synthesis is not optimal yet. In this study, we proposed a new learning method named U-Net-CycleGAN (UC-GAN) to generate synthetic CT (sCT) image for MRI-only radiation treatment planning, which integrated an
发表于 2025-3-29 16:57:07 | 显示全部楼层
发表于 2025-3-29 20:35:36 | 显示全部楼层
发表于 2025-3-30 02:50:46 | 显示全部楼层
发表于 2025-3-30 05:56:12 | 显示全部楼层
https://doi.org/10.1057/978-1-137-46178-0e investigate the feasibility of CT-only dose prediction and the profitability of additional isocenter and contour information. To evaluate the network’s performance, a 5-fold cross-validation is performed on 79 prostate patients, all treated with volumetric modulated arc therapy.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 10:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表