找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence in Medicine; 21st International C Jose M. Juarez,Mar Marcos,Allan Tucker Conference proceedings 2023 The Editor(s)

[复制链接]
查看: 17994|回复: 61
发表于 2025-3-21 19:04:12 | 显示全部楼层 |阅读模式
期刊全称Artificial Intelligence in Medicine
期刊简称21st International C
影响因子2023Jose M. Juarez,Mar Marcos,Allan Tucker
视频video
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Artificial Intelligence in Medicine; 21st International C Jose M. Juarez,Mar Marcos,Allan Tucker Conference proceedings 2023 The Editor(s)
影响因子.This book constitutes the refereed proceedings of the 21st International Conference on Artificial Intelligence in Medicine, AIME 2023, held in Portoroz, Slovenia, in June12–15, 2023..The 23 full papers and 21 short papers presented together with 3 demonstration papers were selected from 108 submissions. The papers are grouped in topical sections on: machine learning and deep learning; explainability and transfer learning; natural language processing; image analysis and signal analysis; data analysis and statistical models; knowledge representation and decision support..
Pindex Conference proceedings 2023
The information of publication is updating

书目名称Artificial Intelligence in Medicine影响因子(影响力)




书目名称Artificial Intelligence in Medicine影响因子(影响力)学科排名




书目名称Artificial Intelligence in Medicine网络公开度




书目名称Artificial Intelligence in Medicine网络公开度学科排名




书目名称Artificial Intelligence in Medicine被引频次




书目名称Artificial Intelligence in Medicine被引频次学科排名




书目名称Artificial Intelligence in Medicine年度引用




书目名称Artificial Intelligence in Medicine年度引用学科排名




书目名称Artificial Intelligence in Medicine读者反馈




书目名称Artificial Intelligence in Medicine读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:46:42 | 显示全部楼层
发表于 2025-3-22 02:07:51 | 显示全部楼层
Gary R. Hudes MD,Jessie Schol RNsicians, showing that our approach finds clinically-relevant solutions. Finally, we discuss the goodness of fit of our graph and its consistency from a clinical decision-making perspective using graphical separation to validate causal pathways.
发表于 2025-3-22 06:33:15 | 显示全部楼层
Geistesgeschichtliche Faschismusdiagnosen,nd new smaller models were trained, achieving a performance as good as the initial ones. Despite the susceptibility of all models to adversarial attacks, adversarial training enabled them to preserve significantly higher results, so it can be a valuable approach to provide a more robust driver drowsiness detection.
发表于 2025-3-22 12:24:36 | 显示全部楼层
发表于 2025-3-22 13:13:28 | 显示全部楼层
发表于 2025-3-22 17:54:00 | 显示全部楼层
Causal Discovery with Missing Data in a Multicentric Clinical Studysicians, showing that our approach finds clinically-relevant solutions. Finally, we discuss the goodness of fit of our graph and its consistency from a clinical decision-making perspective using graphical separation to validate causal pathways.
发表于 2025-3-22 21:38:53 | 显示全部楼层
Adversarial Robustness and Feature Impact Analysis for Driver Drowsiness Detectionnd new smaller models were trained, achieving a performance as good as the initial ones. Despite the susceptibility of all models to adversarial attacks, adversarial training enabled them to preserve significantly higher results, so it can be a valuable approach to provide a more robust driver drowsiness detection.
发表于 2025-3-23 03:49:39 | 显示全部楼层
Computational Evaluation of Model-Agnostic Explainable AI Using Local Feature Importance in Healthcaocal feature importances) as features and the output of the prediction problem (labels) again as labels. We evaluate the method based a real-world tabular electronic health records dataset. At the end, we answer the research question: “How can we computationally evaluate XAI Models for a specific prediction model and dataset?”.
发表于 2025-3-23 07:20:40 | 显示全部楼层
Batch Integrated Gradients: Explanations for Temporal Electronic Health RecordsRecords (EHRs), we see patient records can be stored in temporal sequences. Thus, we demonstrate Batch-Integrated Gradients in producing explanations over a temporal sequence that satisfy proposed properties corresponding to XAI for EHR data.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 12:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表