找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence and Soft Computing; 20th International C Leszek Rutkowski,Rafał Scherer,Jacek M. Zurada Conference proceedings 2021

[复制链接]
楼主: Hazardous
发表于 2025-3-26 21:05:04 | 显示全部楼层
Modification of Learning Feedforward Neural Networks with the BP Methodethod converges relatively slowly. In this paper a new approach to the backpropagation algorithm is presented. The proposed solution speeds up the BP method by using vector calculations. This modification of the BP algorithm was tested on a few standard examples. The obtained performance of both met
发表于 2025-3-27 03:41:51 | 显示全部楼层
发表于 2025-3-27 06:19:19 | 显示全部楼层
发表于 2025-3-27 13:03:15 | 显示全部楼层
发表于 2025-3-27 14:42:56 | 显示全部楼层
Canine Behavior Interpretation Framework Using Deep Graph Modelior, it remains an unfamiliar concept to non-expertise. Therefore, in this paper, we introduce a framework for analyzing dog behavior, which defines the interrelationship between dog postures through a graph model without any additional devices but a camera. First of all, our framework classifies th
发表于 2025-3-27 20:40:48 | 显示全部楼层
发表于 2025-3-28 01:55:23 | 显示全部楼层
发表于 2025-3-28 06:10:58 | 显示全部楼层
发表于 2025-3-28 07:21:53 | 显示全部楼层
Spectroscopy-Based Prediction of In Vitro Dissolution Profile Using Artificial Neural Networksion of the dissolution profile based on spectroscopic data is an alternative to the current destructive and time-consuming method. Raman and near infrared (NIR) spectroscopies are two complementary methods, that provide information on the physical and chemical properties of the tablets and can help
发表于 2025-3-28 11:30:49 | 显示全部楼层
Possibilistic Classification Learning Based on Contrastive Loss in Learning Vector Quantizer Network the learning vector quantization (LVQ) realizing a nearest prototype classifier model. Figuring out the problem of classifying based on possibilistic or probabilistic class labels (assignments) leads to the use of likelihood ratio to organize a sustainable approach. To this end, we start with a spe
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 09:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表