找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence and Soft Computing; 20th International C Leszek Rutkowski,Rafał Scherer,Jacek M. Zurada Conference proceedings 2021

[复制链接]
查看: 21070|回复: 60
发表于 2025-3-21 19:39:46 | 显示全部楼层 |阅读模式
期刊全称Artificial Intelligence and Soft Computing
期刊简称20th International C
影响因子2023Leszek Rutkowski,Rafał Scherer,Jacek M. Zurada
视频video
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Artificial Intelligence and Soft Computing; 20th International C Leszek Rutkowski,Rafał Scherer,Jacek M. Zurada Conference proceedings 2021
影响因子The two-volume set LNAI 12854 and 12855 constitutes the refereed proceedings of the 20th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2021, held in Zakopane, Poland, in June 2021. Due to COVID 19, the conference was held virtually..The 89 full papers presented were carefully reviewed and selected from 195 submissions. The papers included both traditional artificial intelligence methods and soft computing techniques as well as follows: .·        Neural Networks and Their Applications.. .·        Fuzzy Systems and Their Applications .. .·        Evolutionary Algorithms and Their Applications.. .·        Artificial Intelligence in Modeling and Simulation.. .·        Computer Vision, Image and Speech Analysis..·        Data Mining.. ..·        Various Problems of Artificial Intelligence..·        Bioinformatics, Biometrics and Medical Applications.
Pindex Conference proceedings 2021
The information of publication is updating

书目名称Artificial Intelligence and Soft Computing影响因子(影响力)




书目名称Artificial Intelligence and Soft Computing影响因子(影响力)学科排名




书目名称Artificial Intelligence and Soft Computing网络公开度




书目名称Artificial Intelligence and Soft Computing网络公开度学科排名




书目名称Artificial Intelligence and Soft Computing被引频次




书目名称Artificial Intelligence and Soft Computing被引频次学科排名




书目名称Artificial Intelligence and Soft Computing年度引用




书目名称Artificial Intelligence and Soft Computing年度引用学科排名




书目名称Artificial Intelligence and Soft Computing读者反馈




书目名称Artificial Intelligence and Soft Computing读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:23:07 | 显示全部楼层
Modification of Learning Feedforward Neural Networks with the BP Methodethod converges relatively slowly. In this paper a new approach to the backpropagation algorithm is presented. The proposed solution speeds up the BP method by using vector calculations. This modification of the BP algorithm was tested on a few standard examples. The obtained performance of both methods was compared.
发表于 2025-3-22 01:44:09 | 显示全部楼层
https://doi.org/10.1007/978-3-030-87986-0artificial intelligence; classification; computer networks; computer science; computer systems; computer
发表于 2025-3-22 06:06:14 | 显示全部楼层
发表于 2025-3-22 09:18:38 | 显示全部楼层
发表于 2025-3-22 16:34:13 | 显示全部楼层
发表于 2025-3-22 19:26:24 | 显示全部楼层
Durchleuchtung und Subtraktionsangiographieethod converges relatively slowly. In this paper a new approach to the backpropagation algorithm is presented. The proposed solution speeds up the BP method by using vector calculations. This modification of the BP algorithm was tested on a few standard examples. The obtained performance of both methods was compared.
发表于 2025-3-22 23:13:53 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/b/image/162313.jpg
发表于 2025-3-23 04:51:06 | 显示全部楼层
Empirische und theoretische Ausgangspunkte,a (e.g.: investors required return, risk tolerance, goals, and time frame). The objective of this research is to present a two phase deep learning module to csonstruct a financial stocks portfolio that can be used repeatedly to select the most promising stocks and adjust stocks allocations (namely q
发表于 2025-3-23 06:14:07 | 显示全部楼层
Methodologie und Design des Gesamtprojekts,ology of the Factor Augmented Artificial Neural Network Model is applied to improve the predictive capacity of liquidity models compared to traditional econometric methodologies. This hybrid methodology based on dynamic factor models and neural networks is compared with Deep Learning methodologies s
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 09:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表