找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence and Soft Computing; 16th International C Leszek Rutkowski,Marcin Korytkowski,Jacek M. Zurad Conference proceedings

[复制链接]
楼主: Gratification
发表于 2025-3-25 06:38:38 | 显示全部楼层
https://doi.org/10.1007/978-1-4302-1050-4ness. Proposed DCT method is used to reduce the size of system which results in faster processing with limited and controlled precision lost. Proposed method is compared to other ones like Fuzzy Systems, Neural Networks, Support Vector Machines, etc. to investigate the ability to solve sample proble
发表于 2025-3-25 09:21:13 | 显示全部楼层
发表于 2025-3-25 15:07:33 | 显示全部楼层
Geometric Structures as Design Approach,onen learning rule is used with random parameters providing different neuron locations. Any new neuron configuration allows us to obtain a new ETSP solution. This new approach to exploring the solution space of the ETSP is easy to implement and suitable for relatively large ETSP problems. Furthermor
发表于 2025-3-25 17:49:23 | 显示全部楼层
发表于 2025-3-25 23:16:07 | 显示全部楼层
发表于 2025-3-26 02:51:46 | 显示全部楼层
Author Profiling with Classification Restricted Boltzmann Machinesfiling framework with no need for handcrafted features and only minor use of text preprocessing and feature engineering. The classifier achieves competitive results when evaluated with the PAN-AP-13 corpus: 36.59% joint accuracy, 57.83% gender accuracy and 59.17% age accuracy. We also examine the re
发表于 2025-3-26 07:18:44 | 显示全部楼层
发表于 2025-3-26 10:07:28 | 显示全部楼层
Parallel Levenberg-Marquardt Algorithm Without Error Backpropagationhich will also work for MLP but some cells will stay empty. This approach is based on a very interesting idea of learning neural networks without error backpropagation. The presented architecture is based on completely new parallel structures to significantly reduce a very high computational load of
发表于 2025-3-26 14:09:19 | 显示全部楼层
Spectral Analysis of CNN for Tomato Disease Identificationresults generated by a specific network without considering how the internal part of the network itself has generated those results. The visualization of the activations and features of the neurons generated by the network can help to determine the best network architecture for our proposed idea. By
发表于 2025-3-26 20:14:13 | 显示全部楼层
From Homogeneous Network to Neural Nets with Fractional Derivative Mechanismuse of calculus of finite differences proposed by Dudek-Dyduch E. and then developed jointly with Tadeusiewicz R. and others. This kind of neural nets was applied mainly to different features extraction i.e. edges, ridges, maxima, extrema and many others that can be defined with the use of classic d
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 10:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表