找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence and Natural Language; 9th Conference, AINL Andrey Filchenkov,Janne Kauttonen,Lidia Pivovarova Conference proceeding

[复制链接]
楼主: choleric
发表于 2025-3-28 18:01:13 | 显示全部楼层
发表于 2025-3-28 22:39:08 | 显示全部楼层
发表于 2025-3-29 02:10:43 | 显示全部楼层
发表于 2025-3-29 03:22:45 | 显示全部楼层
https://doi.org/10.1007/978-3-662-06318-7plain that a generative model can improve accuracy and reduce the number of iteration steps for PageRank SSL. Moreover, we show that our framework outperforms the best graph-based SSL algorithms on four public citation graph data sets and improves the interpretability of classification results.
发表于 2025-3-29 08:17:29 | 显示全部楼层
发表于 2025-3-29 11:33:27 | 显示全部楼层
Advances of Transformer-Based Models for News Headline Generation,s on the RIA and Lenta datasets of Russian news. BertSumAbs increases ROUGE on average by 2.9 and 2.0 points respectively over previous best score achieved by Phrase-Based Attentional Transformer and CopyNet.
发表于 2025-3-29 16:05:11 | 显示全部楼层
An Explanation Method for Black-Box Machine Learning Survival Models Using the Chebyshev Distance,termining important features and for explaining the black-box model prediction. Moreover, SurvLIME-Inf outperforms SurvLIME when the training set is very small. Numerical experiments with synthetic and real datasets demonstrate the SurvLIME-Inf efficiency.
发表于 2025-3-29 22:12:53 | 显示全部楼层
Unsupervised Neural Aspect Extraction with Related Terms,demonstrate the effectiveness on the real-world dataset. We apply a special loss aimed to improve the quality of multi-aspect extraction. The experimental study demonstrates, what with this loss we increase the precision not only on this joint setting but also on aspect prediction only.
发表于 2025-3-30 00:23:24 | 显示全部楼层
发表于 2025-3-30 05:14:22 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 17:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表