找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Around Burnside; A. I. Kostrikin Book 1990 Springer-Verlag Berlin Heidelberg 1990 Auflösbarkeit.Finite.Lie.Lie algebra.Nilpotent.Prime.alg

[复制链接]
楼主: 愚蠢地活
发表于 2025-3-25 07:07:07 | 显示全部楼层
发表于 2025-3-25 10:17:58 | 显示全部楼层
Laura Bofferding,Nicole M. Wessman-EnzingerTheorem 1.7.4 is optimal in a very definite sense of that word. We shall show in § 3 below that it ceases to hold if the local condition is removed from the statement. In such a case, we say that a Lie algebra . with E. (. is the characteristic of the ground field) is not globally nilpotent.
发表于 2025-3-25 11:45:59 | 显示全部楼层
Proof of the Main Theorem,We have in mind Theorem 1.7.1; all the other results formulated towards the end of Chap. 1 flow from it. No new ideas are needed for the proof of the main theorem. Contrary to a principle of Bourbaki, we have only to prepare ourselves for new calculations and a long chain of deduction.
发表于 2025-3-25 16:49:57 | 显示全部楼层
发表于 2025-3-25 23:07:12 | 显示全部楼层
0071-1136 lt, due to E. I. Zel‘manov); M. R. Vaughan-Lee‘s new approach to the subject; and finally, the crowning achievement of Zel‘manov in establishing RBP for all pri978-3-642-74326-9978-3-642-74324-5Series ISSN 0071-1136 Series E-ISSN 2197-5655
发表于 2025-3-26 01:36:54 | 显示全部楼层
Book 1990 bound for the order of the universal finite group B(d,p) of prime exponent (the English version contains a different treatment of this result, due to E. I. Zel‘manov); M. R. Vaughan-Lee‘s new approach to the subject; and finally, the crowning achievement of Zel‘manov in establishing RBP for all pri
发表于 2025-3-26 07:26:10 | 显示全部楼层
发表于 2025-3-26 12:09:31 | 显示全部楼层
发表于 2025-3-26 14:25:21 | 显示全部楼层
Finite ,-Groups and Lie Algebras,nt approach to describing the multilinear identities of the Lie algebra .(.(., .)) associated with the Burnside group .(., .). In particular, it is proved by elementary methods (see Corollary 2.3 in § 3) that .(.(., .)) satisfies E.. The solution of RBP provided here is therefore independent of other sources.
发表于 2025-3-26 16:57:14 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 00:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表