找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Arakelov Geometry over Adelic Curves; Huayi Chen,Atsushi Moriwaki Book 2020 Springer Nature Singapore Pte Ltd. 2020 Arakelov geometry.Adel

[复制链接]
楼主: ISH
发表于 2025-3-25 04:41:28 | 显示全部楼层
发表于 2025-3-25 10:40:41 | 显示全部楼层
发表于 2025-3-25 12:41:10 | 显示全部楼层
Arakelov Geometry over Adelic Curves978-981-15-1728-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-25 16:28:22 | 显示全部楼层
发表于 2025-3-25 20:54:42 | 显示全部楼层
发表于 2025-3-26 01:46:14 | 显示全部楼层
Metrized vector bundles: local theory,fundament for the global study of adelic vector bundles. Note that we need to consider both Archimedean and non-Archimedean cases. Hence we carefully choose the approach of presentation to unify the statements whenever possible, and to clarify the differences.
发表于 2025-3-26 04:51:23 | 显示全部楼层
Adelic curves,47] in the number field setting. This theory allows to consider all places of a global field in a unified way. It also leads to a uniform approach in the geometry of numbers in global fields, either via the adelic version of Minkowski’s theorems and Siegel’s lemma developed by McFeat [105], Bombieri
发表于 2025-3-26 08:57:41 | 显示全部楼层
Slopes of tensor product,recisely, give a family . of adelic vector bundles over a proper adelic curve ., we give a lower bound of . in terms of the sum of the minimal slopes of . minus a term which is the product of three half of the measure of the infinite places and the sum of ., see Corollary 5.6.2 for details. This res
发表于 2025-3-26 16:15:58 | 显示全部楼层
,Nakai-Moishezon’s criterion,is dense in each .., where . ∈ .. We let .. be the set of all . ∈ . such that |⋅|. is the trivial absolute value. Note that, if .. is not empty, then the above hypothesis implies that, either the .-algebra . is discrete, or the field . is countable.
发表于 2025-3-26 20:00:00 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 21:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表