找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Approximation of Euclidean Metric by Digital Distances; Jayanta Mukhopadhyay Book 2020 The Author(s), under exclusive license to Springer

[复制链接]
查看: 50855|回复: 36
发表于 2025-3-21 18:47:50 | 显示全部楼层 |阅读模式
期刊全称Approximation of Euclidean Metric by Digital Distances
影响因子2023Jayanta Mukhopadhyay
视频video
发行地址Covers the topic of digital distances and their Euclidean approximation comprehensively.Includes recent results and advancement in the theory of digital distances.Summarizes properties of different cl
图书封面Titlebook: Approximation of Euclidean Metric by Digital Distances;  Jayanta Mukhopadhyay Book 2020 The Author(s), under exclusive license to Springer
影响因子.This book discusses different types of distance functions defined in an n-D integral space for their usefulness in approximating the Euclidean metric. It discusses the properties of these distance functions and presents various kinds of error analysis in approximating Euclidean metrics. It also presents a historical perspective on efforts and motivation for approximating Euclidean metrics by digital distances from the mid-sixties of the previous century. The book also contains an in-depth presentation of recent progress, and new research problems in this area. .
Pindex Book 2020
The information of publication is updating

书目名称Approximation of Euclidean Metric by Digital Distances影响因子(影响力)




书目名称Approximation of Euclidean Metric by Digital Distances影响因子(影响力)学科排名




书目名称Approximation of Euclidean Metric by Digital Distances网络公开度




书目名称Approximation of Euclidean Metric by Digital Distances网络公开度学科排名




书目名称Approximation of Euclidean Metric by Digital Distances被引频次




书目名称Approximation of Euclidean Metric by Digital Distances被引频次学科排名




书目名称Approximation of Euclidean Metric by Digital Distances年度引用




书目名称Approximation of Euclidean Metric by Digital Distances年度引用学科排名




书目名称Approximation of Euclidean Metric by Digital Distances读者反馈




书目名称Approximation of Euclidean Metric by Digital Distances读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:03:29 | 显示全部楼层
发表于 2025-3-22 01:52:58 | 显示全部楼层
Linear Combination of Digital Distances,derestimated and overestimated norms. In particular, it presents an analysis on approximation of Euclidean metrics by a linear combination of weighted .-cost and chamfering weighted distance functions. The same theory is applied to get new results and insights in the approximation of Euclidean metri
发表于 2025-3-22 06:22:56 | 显示全部楼层
Book 2020. It discusses the properties of these distance functions and presents various kinds of error analysis in approximating Euclidean metrics. It also presents a historical perspective on efforts and motivation for approximating Euclidean metrics by digital distances from the mid-sixties of the previous
发表于 2025-3-22 11:25:04 | 显示全部楼层
发表于 2025-3-22 15:09:33 | 显示全部楼层
y of digital distances.Summarizes properties of different cl.This book discusses different types of distance functions defined in an n-D integral space for their usefulness in approximating the Euclidean metric. It discusses the properties of these distance functions and presents various kinds of er
发表于 2025-3-22 20:48:17 | 显示全部楼层
发表于 2025-3-22 22:36:39 | 显示全部楼层
发表于 2025-3-23 01:35:25 | 显示全部楼层
发表于 2025-3-23 05:35:55 | 显示全部楼层
Linear Combination of Digital Distances, .-cost and chamfering weighted distance functions. The same theory is applied to get new results and insights in the approximation of Euclidean metrics by other sub-classes such as m-neighbor, t-cost, weighted t-cost, and hyperoctagonal distances.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 22:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表