找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Approximation Theory and Harmonic Analysis on Spheres and Balls; Feng Dai,Yuan Xu Book 2013 Springer Science+Business Media New York 2013

[复制链接]
楼主: FAULT
发表于 2025-3-23 13:19:54 | 显示全部楼层
Harmonic Analysis on the Unit Ball, however, that analysis on the unit ball is closely related to analysis on the unit sphere. Indeed, a large portion of harmonic analysis on the unit ball can be deduced from its counterparts on the sphere.
发表于 2025-3-23 16:47:44 | 显示全部楼层
发表于 2025-3-23 19:33:29 | 显示全部楼层
发表于 2025-3-24 02:10:22 | 显示全部楼层
Harmonic Analysis Associated with Reflection Groups,ighted approximation and harmonic analysis on the sphere, which turn out to be indispensable for the corresponding theory, even for unweighted approximation and harmonic analysis, on the unit ball and on the simplex, as will be seen in later chapters.
发表于 2025-3-24 05:51:49 | 显示全部楼层
1439-7382 ful research material for both experts and advanced graduate.This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area.  While the first part of the book contains mainstream mate
发表于 2025-3-24 08:45:57 | 显示全部楼层
https://doi.org/10.1007/978-3-662-32547-6the Poisson integrals for the Fourier expansion in spherical harmonics, discussed in the second section, are convolution operators, which are also multiplier operators. The convolution and translation operators are used to define and study the Hardy–Littlewood maximal function on the sphere in the third section.
发表于 2025-3-24 10:42:48 | 显示全部楼层
发表于 2025-3-24 18:39:20 | 显示全部楼层
Zeitschrift für die gesamte Anatomiech results for .-harmonic expansions with respect to the product ., which cover results for ordinary spherical harmonic expansions. The proof of such results depends on the boundedness of proj ection operators, which will be established in the first section, assuming a critical estimate.
发表于 2025-3-24 21:19:40 | 显示全部楼层
发表于 2025-3-25 00:17:33 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 17:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表