找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Applied Multiple Imputation; Advantages, Pitfalls Kristian Kleinke,Jost Reinecke,Martin Spiess Textbook 2020 Springer Nature Switzerland AG

[复制链接]
查看: 22644|回复: 36
发表于 2025-3-21 18:36:30 | 显示全部楼层 |阅读模式
期刊全称Applied Multiple Imputation
期刊简称Advantages, Pitfalls
影响因子2023Kristian Kleinke,Jost Reinecke,Martin Spiess
视频video
发行地址Provides an introduction to missing data and multiple imputation for students and applied researchers.Features numerous step-by-step tutorials in R with supplementary R code and data sets.Discusses th
学科分类Statistics for Social and Behavioral Sciences
图书封面Titlebook: Applied Multiple Imputation; Advantages, Pitfalls Kristian Kleinke,Jost Reinecke,Martin Spiess Textbook 2020 Springer Nature Switzerland AG
影响因子This book explores missing data techniques and provides a detailed and easy-to-read introduction to multiple imputation, covering the theoretical aspects of the topic and offering hands-on help with the implementation. It discusses the pros and cons of various techniques and concepts, including multiple imputation quality diagnostics, an important topic for practitioners. It also presents current research and new, practically relevant developments in the field, and demonstrates the use of recent multiple imputation techniques designed for situations where distributional assumptions of the classical multiple imputation solutions are violated. In addition, the book features numerous practical tutorials for widely used R software packages to generate multiple imputations (norm, pan and mice). The provided R code and data sets allow readers to reproduce all the examples and enhance their understanding of the procedures. This book is intended for social and health scientists and other quantitative researchers who analyze incompletely observed data sets, as well as master’s and PhD students with a sound basic knowledge of statistics. .
Pindex Textbook 2020
The information of publication is updating

书目名称Applied Multiple Imputation影响因子(影响力)




书目名称Applied Multiple Imputation影响因子(影响力)学科排名




书目名称Applied Multiple Imputation网络公开度




书目名称Applied Multiple Imputation网络公开度学科排名




书目名称Applied Multiple Imputation被引频次




书目名称Applied Multiple Imputation被引频次学科排名




书目名称Applied Multiple Imputation年度引用




书目名称Applied Multiple Imputation年度引用学科排名




书目名称Applied Multiple Imputation读者反馈




书目名称Applied Multiple Imputation读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:43:03 | 显示全部楼层
2199-7357 ls in R with supplementary R code and data sets.Discusses thThis book explores missing data techniques and provides a detailed and easy-to-read introduction to multiple imputation, covering the theoretical aspects of the topic and offering hands-on help with the implementation. It discusses the pros
发表于 2025-3-22 03:06:25 | 显示全部楼层
Untersuchungsdesign und Methodik,d with simple examples. In addition, conditions are given for analysing data sets without the need to explicitly model the missing data mechanism (“ignorability”). We also review diagnostic tools for incomplete data sets, both descriptive and based on a statistical test.
发表于 2025-3-22 07:46:07 | 显示全部楼层
Untersuchungsdesign und Methodik,ve practical advice which procedure might be suited best in a given scenario because valid inferences in applied research can only be expected based on informed decisions. A conclusion of this chapter will be that there is not the one method or technique that works best under every possible scenario.
发表于 2025-3-22 12:00:15 | 显示全部楼层
Untersuchungsdesign und Methodik,modeling approach, where only univariate marginal models are used to generate imputations. Additional topics are rounding, how to deal with restrictions and how to treat interaction or higher polynomial terms.
发表于 2025-3-22 13:33:53 | 显示全部楼层
Missing Data Mechanism and Ignorability,d with simple examples. In addition, conditions are given for analysing data sets without the need to explicitly model the missing data mechanism (“ignorability”). We also review diagnostic tools for incomplete data sets, both descriptive and based on a statistical test.
发表于 2025-3-22 19:10:30 | 显示全部楼层
发表于 2025-3-23 00:31:13 | 显示全部楼层
Multiple Imputation: Theory,modeling approach, where only univariate marginal models are used to generate imputations. Additional topics are rounding, how to deal with restrictions and how to treat interaction or higher polynomial terms.
发表于 2025-3-23 02:01:14 | 显示全部楼层
发表于 2025-3-23 06:08:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 20:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表