找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Applied Multidimensional Scaling; Ingwer Borg,Patrick J. F. Groenen,Patrick Mair Book 20131st edition The Author(s) 2013 Data analysis.MDS

[复制链接]
查看: 12233|回复: 41
发表于 2025-3-21 17:44:10 | 显示全部楼层 |阅读模式
期刊全称Applied Multidimensional Scaling
影响因子2023Ingwer Borg,Patrick J. F. Groenen,Patrick Mair
视频videohttp://file.papertrans.cn/160/159970/159970.mp4
发行地址This book is a brief introduction to applied Multidimensional Scaling (MDS) Comprehensively written for MDS users.Chooses a particular perspective, stressing the issues that always come up when MDS is
学科分类SpringerBriefs in Statistics
图书封面Titlebook: Applied Multidimensional Scaling;  Ingwer Borg,Patrick J. F. Groenen,Patrick Mair Book 20131st edition The Author(s) 2013 Data analysis.MDS
影响因子This book introduces MDS as a psychological model and as a data analysis technique for the applied researcher. It also discusses, in detail, how to use two MDS programs, Proxscal (a module of SPSS) and Smacof (an R-package). The book is unique in its orientation on the applied researcher, whose primary interest is in using MDS as a tool to build substantive theories. This is done by emphasizing practical issues (such as evaluating model fit), by presenting ways to enforce theoretical expectations on the MDS solution, and by discussing typical mistakes that MDS users tend to make.  The primary audience of this book are psychologists, social scientists, and market researchers. No particular background knowledge is required, beyond a basic knowledge of statistics.
Pindex Book 20131st edition
The information of publication is updating

书目名称Applied Multidimensional Scaling影响因子(影响力)




书目名称Applied Multidimensional Scaling影响因子(影响力)学科排名




书目名称Applied Multidimensional Scaling网络公开度




书目名称Applied Multidimensional Scaling网络公开度学科排名




书目名称Applied Multidimensional Scaling被引频次




书目名称Applied Multidimensional Scaling被引频次学科排名




书目名称Applied Multidimensional Scaling年度引用




书目名称Applied Multidimensional Scaling年度引用学科排名




书目名称Applied Multidimensional Scaling读者反馈




书目名称Applied Multidimensional Scaling读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:53:25 | 显示全部楼层
Book 20131st editionpresenting ways to enforce theoretical expectations on the MDS solution, and by discussing typical mistakes that MDS users tend to make.  The primary audience of this book are psychologists, social scientists, and market researchers. No particular background knowledge is required, beyond a basic knowledge of statistics.
发表于 2025-3-22 02:14:36 | 显示全部楼层
Book 20131st editione two MDS programs, Proxscal (a module of SPSS) and Smacof (an R-package). The book is unique in its orientation on the applied researcher, whose primary interest is in using MDS as a tool to build substantive theories. This is done by emphasizing practical issues (such as evaluating model fit), by
发表于 2025-3-22 07:56:40 | 显示全部楼层
https://doi.org/10.1007/978-3-642-31848-1Data analysis; MDS; Multidimensional scaling; R package Smacof
发表于 2025-3-22 09:53:37 | 显示全部楼层
Applied Multidimensional Scaling978-3-642-31848-1Series ISSN 2191-544X Series E-ISSN 2191-5458
发表于 2025-3-22 15:51:49 | 显示全部楼层
Entwicklung ostdeutscher Unternehmen applications, iterative methods are needed, because they admit many types of data and distances. They use a two-phase optimization algorithm, moving the points in MDS space in small steps while holding the data or their transforms fixed, and vice versa, until convergence is reached.
发表于 2025-3-22 17:13:12 | 显示全部楼层
发表于 2025-3-22 21:59:12 | 显示全部楼层
https://doi.org/10.1007/978-3-663-20381-0The different purposes of MDS are explained: MDS as a psychological model of similarity judgments; MDS for visualizing proximity data; and MDS for testing structural hypotheses.
发表于 2025-3-23 03:40:30 | 显示全部楼层
发表于 2025-3-23 07:53:03 | 显示全部楼层
Beurteilung der Versuchsergebnisse,The data for MDS, proximities, are discussed. Proximities can be collected directly as judgments of similarity; proximities can be derived from data vectors; proximities may result from converting other indices; and co-occurrence data are yet another popular form of proximities.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-9 22:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表