找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Applied Hyperfunction Theory; Isao Imai Book 1992 Springer Science+Business Media Dordrecht 1992 Fourier series.analytic function.differen

[复制链接]
楼主: autoantibodies
发表于 2025-3-28 15:03:44 | 显示全部楼层
发表于 2025-3-28 22:19:50 | 显示全部楼层
Fourier Transformation of Power-Type Hyperfunctions, as ordinary functions. However, as will be seen later, these power-type hyperfunctions play decisive roles when we investigate the asymptotic behaviour of the Fourier transforms .(ξ) = ..(.) for ξ → ∞ for a given function . (.).
发表于 2025-3-29 01:35:46 | 显示全部楼层
发表于 2025-3-29 04:21:24 | 显示全部楼层
发表于 2025-3-29 07:45:05 | 显示全部楼层
发表于 2025-3-29 12:53:55 | 显示全部楼层
Poisson-Schwarz Integral Formulae,en D is a circle or a halfplane, formulae to express the solution are known and are called the .. In this chapter, we discuss these formulae and related facts from the viewpoint of hyperfunction theory. As an example of their application we deal with integral equations related to the Hilbert transforms.
发表于 2025-3-29 18:35:35 | 显示全部楼层
Miriam-Linnea Hale,André Melzert . = O. Therefore, ..(.) and ..(.) are simpler than .(.) itself, so that it may be convenient to consider hyperfunctions corresponding to .. (.) and ..(.) and to combine them to obtain the hyperfunction corresponding to .(.).
发表于 2025-3-29 21:09:51 | 显示全部楼层
发表于 2025-3-30 01:10:45 | 显示全部楼层
发表于 2025-3-30 05:41:10 | 显示全部楼层
Periodic Hyperfunctions and Fourier Series Fourier Series,his chapter we study periodic hyperfunctions. Then we shall see that the theory of Fourier series is naturally absorbed into the theory of Fourier transformations. For this purpose, we shall first introduce the concept of standard generating functions.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 08:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表