用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes; 12th International S Teo Mora,Harold Mattson Conference proceedings 1997

[复制链接]
楼主: architect
发表于 2025-3-25 07:15:43 | 显示全部楼层
发表于 2025-3-25 07:31:06 | 显示全部楼层
Exponentiation in finite fields: Theory and practice,Finally we want to outline the main properties for a fast software exponentiation algorithm in .for large .∈ℕ:
发表于 2025-3-25 12:49:44 | 显示全部楼层
发表于 2025-3-25 18:25:56 | 显示全部楼层
发表于 2025-3-25 22:31:08 | 显示全部楼层
Elementary approximation of exponentials of Lie polynomials,Let .=.(..,..., x.) be a graded Lie algebra generated by ..,..., ... In this paper, we show that for any element . in . and any order ., exp(.) may be approximated at the order . by a finite product of elementary factors exp(λ.,x.,). We give an explicit construction that avoids any calculation in the Lie algebra.
发表于 2025-3-26 03:59:45 | 显示全部楼层
发表于 2025-3-26 06:55:36 | 显示全部楼层
,Certain self-dual codes over ℤ4 and the odd Leech lattice,er, we provide a classification of length 24 double circulant Type I codes over ℤ. with minimum Euclidean weight 12. These codes determine (via Construction A.) the odd Leech lattice, which is a unique 24-dimensional odd unimodular lattice with minimum norm 3.
发表于 2025-3-26 11:48:24 | 显示全部楼层
The split weight (,,, ,,) enumeration of Reed-Muller codes for ,,+,,<2,,,al form for all the relevant Boolean polynomials is derived. These results are applied to analyzing the structure and complexity of subtrellises of codewords of weights less than 2.. of Reed-Muller codes.
发表于 2025-3-26 14:23:25 | 显示全部楼层
Optimal linear codes of dimension 4 over ,(5),ane arcs in .(2, 5), we prove the nonexistence of codes with parameters [215, 4, 171]. and [209, 4, 166].. This determinesthe exact value of ..(4, .) for .=166, 167, 168, 169, 170, 171. There remain 16 .‘s for which the exact value of .. (4, .) is not known.
发表于 2025-3-26 19:12:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-6 10:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表