找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Andreotti-Grauert Theory by Integral Formulas; Gennadi M. Henkin,Jürgen Leiterer Book 1988 Springer Science+Business Media New York 1988 a

[复制链接]
楼主: 哑剧表演
发表于 2025-3-23 10:39:09 | 显示全部楼层
发表于 2025-3-23 15:25:03 | 显示全部楼层
发表于 2025-3-23 21:51:50 | 显示全部楼层
0743-1643 Overview: 978-0-8176-3413-1978-1-4899-6724-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-23 22:55:36 | 显示全部楼层
https://doi.org/10.1007/978-1-4899-6724-4analysis; Integral; integral equation; mathematics
发表于 2025-3-24 06:13:33 | 显示全部楼层
发表于 2025-3-24 07:04:33 | 显示全部楼层
Integral Formulas and First Applications,the arguments which lead from the Poincaré .-lemma and the regularity of the ∂̄-operator to the Dolbeault isomorphism and the theorem on smoothing of the .-cohomology. In Sect. 3 we prove a generalization of the Cauchy-Fantappie formula, which will be called the . Cauchy-Fantappie formula. This form
发表于 2025-3-24 13:36:50 | 显示全部楼层
The Cauchy-Riemann Equation on q-Convex Manifolds, then dim H. (X, E) < ∞ for all r≥n−q, where, in the . q-convex case, even H. (X, E) = 0 for all r≥n−q. Also in Sect. 12, we prove the following supplement to Theorem 11.2: If D is a non-degenerate . q-convex domain in an n-dimensional complex manifold X, and E is a holomorphic vector bundle over X,
发表于 2025-3-24 14:59:46 | 显示全部楼层
The Cauchy-Riemann Equation on q-Concave Manifolds,r≤q−1 admit uniquely determined continuations along such extensions (for r=0, this is the global Hartogs extension phenomenon for holomorphic functions). Moreover, corresponding results with uniform estimates are obtained. At the end of Sect. 15 we prove the classical Andreotti-Grauert finiteness th
发表于 2025-3-24 22:23:05 | 显示全部楼层
O. Pongs,R. Bald,V. A. Erdmann,E. Reinwaldthe arguments which lead from the Poincaré .-lemma and the regularity of the ∂̄-operator to the Dolbeault isomorphism and the theorem on smoothing of the .-cohomology. In Sect. 3 we prove a generalization of the Cauchy-Fantappie formula, which will be called the . Cauchy-Fantappie formula. This form
发表于 2025-3-25 00:48:33 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 14:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表