找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Analytic, Algebraic and Geometric Aspects of Differential Equations; Będlewo, Poland, Sep Galina Filipuk,Yoshishige Haraoka,Sławomir Michal

[复制链接]
楼主: 哑剧表演
发表于 2025-3-28 14:46:24 | 显示全部楼层
发表于 2025-3-28 22:15:59 | 显示全部楼层
发表于 2025-3-29 01:58:33 | 显示全部楼层
发表于 2025-3-29 03:32:37 | 显示全部楼层
发表于 2025-3-29 10:48:03 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-3552-9th respect to . which have polynomial coefficients in .. We obtain a sufficient condition for the .-summability of formal solutions in terms of a global analyticity and a proper exponential growth estimate of the Cauchy data.
发表于 2025-3-29 14:34:23 | 显示全部楼层
Conference proceedings 2017nd in September 2015. The contributions provide an overview of the current level of interaction between algebra, geometry and analysis and demonstrate the manifold aspects of the theory of ordinary and partial differential equations, while also pointing out the highly fruitful interrelations between
发表于 2025-3-29 16:41:02 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-3552-9n its Stokes curves. The derivation is based on the computation of Stokes multipliers of the Lax pair associated with (PII) and (alt-dPI). The detailed proof and computations will be discussed in our forthcoming paper.
发表于 2025-3-29 20:38:44 | 显示全部楼层
https://doi.org/10.1007/978-981-19-0464-6ese results is obtained for the semi-classical orthogonal polynomials with the weight functions coming from the general hypergeometric integrals on the Grassmannian ... To establish the desired relations, we make use of the Atiyah-Ward Ansatz construction of particular solutions for the 2 × 2 Schlesinger system and its degenerated ones.
发表于 2025-3-30 03:05:50 | 显示全部楼层
On Stokes Phenomena for the Alternate Discrete PI Equationn its Stokes curves. The derivation is based on the computation of Stokes multipliers of the Lax pair associated with (PII) and (alt-dPI). The detailed proof and computations will be discussed in our forthcoming paper.
发表于 2025-3-30 05:36:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 09:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表