找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Analytic Number Theory; Chaohua Jia,Kohji Matsumoto Book 2002 Springer Science+Business Media Dordrecht 2002 Arithmetic.Diophantine approx

[复制链接]
楼主: 精明
发表于 2025-3-25 04:49:48 | 显示全部楼层
Pierpaolo Basile,Barbara McGillivraycongruence. As applications, we mention some generalizations of Morley’s congruence and Jacobstahl’s Theorem to modulo arbitary positive integers. The details of the proof will partly appear in Acta Arithmetica.
发表于 2025-3-25 10:50:37 | 显示全部楼层
Aljaž Osojnik,Panče Panov,Sašo Džeroskis that . for an irrational number . of finite type .. We show further that if . is an irrational number of constant type, then the discrepancy of the sequence . We extend the results much more by van der Corput’s inequality.
发表于 2025-3-25 13:36:50 | 显示全部楼层
发表于 2025-3-25 17:02:08 | 显示全部楼层
Pawel Matuszyk,Myra Spiliopoulou....1, .. ≥ 0, and the minimal polynomial of . is given by .. − .... − ... − ... − 1. From the substitution associated with the Pisot number ., a domain with a fractal boundary, called atomic surface, is constructed. The essential point of the proof is to define a natural extension of the .-transfor
发表于 2025-3-26 00:04:11 | 显示全部楼层
Sarah D’Ettorre,Herna L. Viktor,Eric Paquet-functions in question are the most general E. Landau’s type ones that satisfy the functional equations with multiple gamma factors..Instead of simply applying Landau’s colossal theorem to . .(.), we start from the functional equation satisfied by .(.) and raise it to the .-th power. This, together
发表于 2025-3-26 03:10:22 | 显示全部楼层
Kazuto Fukuchi,Quang Khai Tran,Jun Sakuma → 0. Our proof is based on the results on Barnes’ double zeta-functions given in the author’s former article [12]. We also prove asymptotic expansions of log Γ.Γ.(2.. − 1, (.. − 1, .)) , log ..(ε. − 1, ..) and log ..(ε., ε., ε.), where .. is the fundamental unit of .% MathType!MTEF!2!1!+-% feaagCar
发表于 2025-3-26 05:13:11 | 显示全部楼层
发表于 2025-3-26 09:04:31 | 显示全部楼层
发表于 2025-3-26 15:32:40 | 显示全部楼层
发表于 2025-3-26 17:40:46 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 11:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表