找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Analytic D-Modules and Applications; Jan-Erik Björk Book 1993 Springer Science+Business Media Dordrecht 1993 Hypergeometric function.calcu

[复制链接]
楼主: infection
发表于 2025-3-27 00:10:15 | 显示全部楼层
Regular holonomic ,-modules,ular holonomic if its formal solution complex is equal to its analytic solution complex at every point, i.e. if . for every .. ∈ Supp(.). The class of regular holonomic complexes is denoted by D.. (..). A holonomic module is regular holonomic if its single degree complex is regular holonomic. The cl
发表于 2025-3-27 02:07:54 | 显示全部楼层
发表于 2025-3-27 07:55:19 | 显示全部楼层
Distributions and regular holonomic systems,tion 2 as a preparation to section 3. There we prove that every regular holonomic ..-module on a complex manifold is locally a cyclic module generated by a distribution on the underlying real manifold. The main result is Theorem 7.3.5 which gives an exact functor from RH(..) into the category of reg
发表于 2025-3-27 09:30:23 | 显示全部楼层
Microdifferential operators,n of .. is presented in the first section. The sheaf of rings .. is coherent and the stalks are regular Auslander rings with global homological dimension equal to ... Let .: .*(.) →. be the projection. Then .... is a subring of ... If . ∈ coh(..) there exists the ....A basic result is the equality S
发表于 2025-3-27 14:00:24 | 显示全部楼层
发表于 2025-3-27 18:31:44 | 显示全部楼层
发表于 2025-3-28 00:53:41 | 显示全部楼层
发表于 2025-3-28 06:02:05 | 显示全部楼层
发表于 2025-3-28 09:58:19 | 显示全部楼层
发表于 2025-3-28 11:14:10 | 显示全部楼层
ges) applicable to them. The closure property is shown to be preserved in a natural way by the results of operations possessing the same characteristics as the operands in a query. It is shown that every class possesses the properties of an operand by defining a set of objects and deriving a set of
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 00:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表