找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Analytic D-Modules and Applications; Jan-Erik Björk Book 1993 Springer Science+Business Media Dordrecht 1993 Hypergeometric function.calcu

[复制链接]
查看: 13861|回复: 43
发表于 2025-3-21 16:58:09 | 显示全部楼层 |阅读模式
期刊全称Analytic D-Modules and Applications
影响因子2023Jan-Erik Björk
视频video
学科分类Mathematics and Its Applications
图书封面Titlebook: Analytic D-Modules and Applications;  Jan-Erik Björk Book 1993 Springer Science+Business Media Dordrecht 1993 Hypergeometric function.calcu
Pindex Book 1993
The information of publication is updating

书目名称Analytic D-Modules and Applications影响因子(影响力)




书目名称Analytic D-Modules and Applications影响因子(影响力)学科排名




书目名称Analytic D-Modules and Applications网络公开度




书目名称Analytic D-Modules and Applications网络公开度学科排名




书目名称Analytic D-Modules and Applications被引频次




书目名称Analytic D-Modules and Applications被引频次学科排名




书目名称Analytic D-Modules and Applications年度引用




书目名称Analytic D-Modules and Applications年度引用学科排名




书目名称Analytic D-Modules and Applications读者反馈




书目名称Analytic D-Modules and Applications读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:57:40 | 显示全部楼层
发表于 2025-3-22 02:26:29 | 显示全部楼层
https://doi.org/10.1007/978-3-030-37763-2ry of left ..-modules is equal to 2 · dim(.) + 1. for every complex manifold ...We introduce the derived category .. (..) whose objects are bounded complexes of left ..-modules. Various operations from Chapter I are extended to derived categories in section 1 and 2..The construction of direct and in
发表于 2025-3-22 07:55:10 | 显示全部楼层
Postdisciplinary Studies in Discourse in ... Given such a pair there exists the direct image sheaf .% MathType!MTEF!2!1!+-% feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr% pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba
发表于 2025-3-22 09:43:14 | 显示全部楼层
发表于 2025-3-22 13:07:47 | 显示全部楼层
Conclusion: Psychoanalysis as a Cause,ume that zero is the sole critical value of ., . = [..] and SS(.) does not intersect the set .outside the zero-section. In section 1 we study ..-submodules of .(., .) generated by L ⊗ f . when L is a coherent Ox-submodule of M. The main result asserts that Dx(L ⊗f.) is a coherent Dx-module and
发表于 2025-3-22 21:05:26 | 显示全部楼层
Perspektiven der Mathematikdidaktiktion 2 as a preparation to section 3. There we prove that every regular holonomic ..-module on a complex manifold is locally a cyclic module generated by a distribution on the underlying real manifold. The main result is Theorem 7.3.5 which gives an exact functor from RH(..) into the category of reg
发表于 2025-3-22 21:49:58 | 显示全部楼层
Perspektiven der Mathematikdidaktikn of .. is presented in the first section. The sheaf of rings .. is coherent and the stalks are regular Auslander rings with global homological dimension equal to ... Let .: .*(.) →. be the projection. Then .... is a subring of ... If . ∈ coh(..) there exists the ....A basic result is the equality S
发表于 2025-3-23 02:25:58 | 显示全部楼层
https://doi.org/10.1007/978-3-030-37763-2A coherent ..-module . whose characterstic variety has dimension dim(.) is called holonomic. Let . be a holonomic module. The involutivity of SS(.) implies that it is a conic . analytic set in .*(.). Let {..} be a Whitney stratification for which
发表于 2025-3-23 07:27:55 | 显示全部楼层
Holonomic ,-modules,A coherent ..-module . whose characterstic variety has dimension dim(.) is called holonomic. Let . be a holonomic module. The involutivity of SS(.) implies that it is a conic . analytic set in .*(.). Let {..} be a Whitney stratification for which
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 00:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表