找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Analysis 1; Differential- und In Otto Forster Textbook 20047th edition Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH, Wiesbade

[复制链接]
楼主: JAZZ
发表于 2025-3-30 12:10:31 | 显示全部楼层
发表于 2025-3-30 15:26:57 | 显示全部楼层
发表于 2025-3-30 17:29:09 | 显示全部楼层
Die Exponentialfunktion im Komplexen,n wir die Exponentialfunktion für komplexe Argumente. Sie ist wie im Reellen durch die Expo-nentialreihe definiert. Dazu müssen wir einige Sätze über die Konvergenz von Folgen und Reihen ins Komplexe übertragen, was eine gute Gelegenheit zur Wiederholung dieser Begriffe gibt.
发表于 2025-3-30 23:45:44 | 显示全部楼层
Trigonometrische Funktionen,nschaften, wie Reihenentwicklung, Additionstheoreme und Periodizität ergeben sich daraus in einfacher Weise. Außerdem behandeln wir in diesem Paragraphen die Arcus-Funktionen, die Umkehrfunktionen der trigonometrischen Funktionen.
发表于 2025-3-31 02:57:33 | 显示全部楼层
Differentiation,echenregeln für die Ableitung, wie Produkt-, Quotienten- und Ketten-Regel sowie die Formel für die Ableitung der Umkehrfunktion. Damit ist es dann ein leichtes, die Ableitungen aller bisher besprochenen Funktionen zu berechnen.
发表于 2025-3-31 07:13:06 | 显示全部楼层
发表于 2025-3-31 09:12:37 | 显示全部楼层
,Numerische Lösung von Gleichungen,ösungen, wie dies etwa bei quadratischen Polynomen der Fall ist, durch einen expliziten Ausdruck angeben. Es sind Näherungsmethoden notwendig, bei denen die Lösungen als Grenzwerte von Folgen dargestellt werden, deren einzelne Glieder berechnet werden können. Für die Brauchbarkeit eines Näherungsver
发表于 2025-3-31 14:23:42 | 显示全部楼层
Das Riemannsche Integral, Treppenfunktionen, wobei noch keine Grenzwertbetrachtungen nötig sind und der elementargeometrische Flächeninhalt von Rechtecken zugrundeliegt. Das Integral allgemeinerer Funktionen wird dann durch Approximation mittels Treppenfunktionen definiert.
发表于 2025-3-31 21:15:38 | 显示全部楼层
Textbook 20047th edition Inhalten vorzudringen und sie mit vielen konkreten Beispielen zu illustrieren. An verschiedenen Stellen wurden Bezüge zur Informatik hergestellt. Einige numerische Beispiele wurden durch Programm-Codes ergänzt, so dass die Rechnungen direkt am Computer nachvollzogen werden können.
发表于 2025-3-31 23:10:17 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 07:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表