找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Invitation to Algebraic Geometry; Karen E. Smith,Lauri Kahanpää,William Traves Textbook 2000 Springer Science+Business Media New York 2

[复制链接]
楼主: 管玄乐团
发表于 2025-3-23 11:42:06 | 显示全部楼层
发表于 2025-3-23 14:20:39 | 显示全部楼层
发表于 2025-3-23 20:46:21 | 显示全部楼层
Otto Körner Dr. med., Dr. phil. h. c.Much of the power and rigor of algebraic geometry comes from the fact that geometric questions can be translated into purely algebraic problems.
发表于 2025-3-23 23:10:42 | 显示全部楼层
,Die Gruppe der Schlangen (öϕιες),Affine space A. has a natural compactification, the projective space ℙ., obtained by adding an infinitely distant point in every direction. The goal of this chapter is to introduce projective space and projective varieties and to interpret them as natural compactifications of affine varieties.
发表于 2025-3-24 03:31:31 | 显示全部楼层
,Störungen des visuellen Erkennens,Veronese maps provide an important example of morphisms of quasi-projective varieties. A Veronese map embeds a projective space ℙ. as a subvariety of some higher-dimensional projective space in a nontrivial way.
发表于 2025-3-24 06:40:36 | 显示全部楼层
发表于 2025-3-24 12:15:45 | 显示全部楼层
发表于 2025-3-24 16:18:34 | 显示全部楼层
Projective Varieties,Affine space A. has a natural compactification, the projective space ℙ., obtained by adding an infinitely distant point in every direction. The goal of this chapter is to introduce projective space and projective varieties and to interpret them as natural compactifications of affine varieties.
发表于 2025-3-24 19:39:35 | 显示全部楼层
Classical Constructions,Veronese maps provide an important example of morphisms of quasi-projective varieties. A Veronese map embeds a projective space ℙ. as a subvariety of some higher-dimensional projective space in a nontrivial way.
发表于 2025-3-25 01:42:03 | 显示全部楼层
Birational Geometry,In 1964, Heisuke Hironaka proved a fundamental theorem: Every quasi-projective variety can be ., or equivalently, every variety is “birationally equivalent” to a smooth projective variety. Before we can state this theorem, we need to introduce some new ideas.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 09:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表