找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Invitation to Alexandrov Geometry; CAT(0) Spaces Stephanie Alexander,Vitali Kapovitch,Anton Petruni Book 2019 The Author(s), under exclu

[复制链接]
查看: 38886|回复: 35
发表于 2025-3-21 16:48:42 | 显示全部楼层 |阅读模式
期刊全称An Invitation to Alexandrov Geometry
期刊简称CAT(0) Spaces
影响因子2023Stephanie Alexander,Vitali Kapovitch,Anton Petruni
视频video
发行地址Explains the importance of CAT(0) geometry in geometric group theory.Demonstrates Alexandrov geometry through applications and theorems.Discusses Reshetnyak gluing theorem and Hadamard-Cartan globiliz
学科分类SpringerBriefs in Mathematics
图书封面Titlebook: An Invitation to Alexandrov Geometry; CAT(0) Spaces Stephanie Alexander,Vitali Kapovitch,Anton Petruni Book 2019 The Author(s), under exclu
影响因子.Aimed toward graduate students and research mathematicians, with minimal prerequisites this book  provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory.  Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds..
Pindex Book 2019
The information of publication is updating

书目名称An Invitation to Alexandrov Geometry影响因子(影响力)




书目名称An Invitation to Alexandrov Geometry影响因子(影响力)学科排名




书目名称An Invitation to Alexandrov Geometry网络公开度




书目名称An Invitation to Alexandrov Geometry网络公开度学科排名




书目名称An Invitation to Alexandrov Geometry被引频次




书目名称An Invitation to Alexandrov Geometry被引频次学科排名




书目名称An Invitation to Alexandrov Geometry年度引用




书目名称An Invitation to Alexandrov Geometry年度引用学科排名




书目名称An Invitation to Alexandrov Geometry读者反馈




书目名称An Invitation to Alexandrov Geometry读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:31:03 | 显示全部楼层
发表于 2025-3-22 01:56:28 | 显示全部楼层
发表于 2025-3-22 07:11:49 | 显示全部楼层
发表于 2025-3-22 12:13:19 | 显示全部楼层
发表于 2025-3-22 13:57:50 | 显示全部楼层
Book 2019ok quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds..
发表于 2025-3-22 17:34:35 | 显示全部楼层
发表于 2025-3-22 23:36:29 | 显示全部楼层
发表于 2025-3-23 04:01:29 | 显示全部楼层
https://doi.org/10.1007/978-3-322-87138-1In this chapter we give a partial answer to the question: . .?
发表于 2025-3-23 06:14:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 01:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表