找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to Riemann Surfaces; Terrence Napier,Mohan Ramachandran Textbook 2012 Springer Science+Business Media, LCC 2012 DeRham-Hod

[复制链接]
楼主: Extraneous
发表于 2025-3-23 12:08:38 | 显示全部楼层
Uniformization and Embedding of Riemann Surfaces. ℂ, . Δ={.∈ℂ||.|<1}..The second goal of this chapter is the fact that every Riemann surface . may be obtained by holomorphic attachment of tubes at elements of a locally finite sequence of coordinate disks in a domain in ℙ.. In particular, for . compact, this allows one to form a canonical homology basis.
发表于 2025-3-23 15:45:35 | 显示全部楼层
Entwicklung des Untersuchungsmodells,s at a point, and to ., both of which are important objects in complex analysis and Riemann surface theory. We also consider homology groups, which are essentially Abelian versions of the fundamental group, and cohomology groups, which are groups that are dual to the homology groups.
发表于 2025-3-23 20:23:50 | 显示全部楼层
发表于 2025-3-24 00:48:32 | 显示全部楼层
发表于 2025-3-24 02:36:23 | 显示全部楼层
发表于 2025-3-24 10:10:46 | 显示全部楼层
发表于 2025-3-24 11:07:12 | 显示全部楼层
发表于 2025-3-24 16:46:55 | 显示全部楼层
https://doi.org/10.1007/978-3-663-04680-6 on second countability of Riemann surfaces, and analogues of the Mittag-Leffler theorem and the Runge approximation theorem for open Riemann surfaces. Viewing holomorphic functions as solutions of the homogeneous Cauchy–Riemann equation . in ℂ allows one to very efficiently obtain their basic prope
发表于 2025-3-24 22:23:06 | 显示全部楼层
https://doi.org/10.1007/978-3-663-04680-6ine bundle. We first consider the basic properties of holomorphic line bundles as well as those of sheaves and divisors. We then proceed with a discussion of the solution of the inhomogeneous Cauchy–Riemann equation with .. estimates in this more general setting. In this setting, there is a natural
发表于 2025-3-25 01:44:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-11-15 23:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表