找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to Hamiltonian Mechanics; Gerardo F. Torres del Castillo Textbook 2018 Springer Nature Switzerland AG 2018 inertia tensor.

[复制链接]
查看: 14290|回复: 38
发表于 2025-3-21 19:52:58 | 显示全部楼层 |阅读模式
期刊全称An Introduction to Hamiltonian Mechanics
影响因子2023Gerardo F. Torres del Castillo
视频video
发行地址Presents a precise definition and examples of the symmetries of a Hamiltonian, including transformations that depend explicitly on the time.Contains the definition and examples of R-separable solution
学科分类Birkhäuser Advanced Texts‘ Basler Lehrbücher
图书封面Titlebook: An Introduction to Hamiltonian Mechanics;  Gerardo F. Torres del Castillo Textbook 2018 Springer Nature Switzerland AG 2018 inertia tensor.
影响因子This textbook examines the Hamiltonian formulation in classical mechanics with the basic mathematical tools of multivariate calculus. It explores topics like variational symmetries, canonoid transformations, and geometrical optics that are usually omitted from an introductory classical mechanics course. For students with only a basic knowledge of mathematics and physics, this book makes those results accessible through worked-out examples and well-chosen exercises..For readers not familiar with Lagrange equations, the first chapters are devoted to the Lagrangian formalism and its applications. Later sections discuss canonical transformations, the Hamilton–Jacobi equation, and the Liouville Theorem on solutions of the Hamilton–Jacobi equation. .Graduate and advanced undergraduate students in physics or mathematics who are interested in mechanics and applied math will benefit from this treatment of analytical mechanics. The textassumes the basics of classical mechanics, as well as linear algebra, differential calculus, elementary differential equations and analytic geometry. Designed for self-study, this book includes detailed examples and exercises with complete solutions, although
Pindex Textbook 2018
The information of publication is updating

书目名称An Introduction to Hamiltonian Mechanics影响因子(影响力)




书目名称An Introduction to Hamiltonian Mechanics影响因子(影响力)学科排名




书目名称An Introduction to Hamiltonian Mechanics网络公开度




书目名称An Introduction to Hamiltonian Mechanics网络公开度学科排名




书目名称An Introduction to Hamiltonian Mechanics被引频次




书目名称An Introduction to Hamiltonian Mechanics被引频次学科排名




书目名称An Introduction to Hamiltonian Mechanics年度引用




书目名称An Introduction to Hamiltonian Mechanics年度引用学科排名




书目名称An Introduction to Hamiltonian Mechanics读者反馈




书目名称An Introduction to Hamiltonian Mechanics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:20:07 | 显示全部楼层
发表于 2025-3-22 01:36:39 | 显示全部楼层
发表于 2025-3-22 06:20:18 | 显示全部楼层
发表于 2025-3-22 09:46:10 | 显示全部楼层
Rigid Bodies,nt particles such that the distances between them are constant. Even though, in essence, this example is similar to those already considered, the expression of the kinetic energy of a rigid body involves a more elaborate process and the definition of a new object (the inertia tensor)
发表于 2025-3-22 16:42:46 | 显示全部楼层
发表于 2025-3-22 18:05:10 | 显示全部楼层
https://doi.org/10.1007/978-3-662-38552-4As we have seen in the preceding chapter, the equations of motion of a mechanical system subject to holonomic constraints, with forces derivable from a potential, can be expressed in terms of a single function.
发表于 2025-3-22 22:25:05 | 显示全部楼层
发表于 2025-3-23 01:47:58 | 显示全部楼层
发表于 2025-3-23 06:08:25 | 显示全部楼层
The Lagrangian Formalism,In this chapter we show that the equations of motion of certain mechanical systems, obtained from Newton’s second law, can be expressed in a convenient manner in terms of a single real-valued function.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 20:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表