找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to Convex Polytopes; Arne Brøndsted Textbook 1983 Springer Science+Business Media New York 1983 Equivalence.Konvexes Polyt

[复制链接]
查看: 9422|回复: 35
发表于 2025-3-21 17:40:12 | 显示全部楼层 |阅读模式
期刊全称An Introduction to Convex Polytopes
影响因子2023Arne Brøndsted
视频video
学科分类Graduate Texts in Mathematics
图书封面Titlebook: An Introduction to Convex Polytopes;  Arne Brøndsted Textbook 1983 Springer Science+Business Media New York 1983 Equivalence.Konvexes Polyt
影响因子The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. All the background information on convex sets and convex polytopes which is m~eded to under­ stand and appreciate these three theorems is developed in detail. This background material also forms a basis for studying other aspects of polytope theory. The Dehn-Sommerville Relations are classical, whereas the proofs of the Upper Bound Theorem and the Lower Bound Theorem are of more recent date: they were found in the early 1970‘s by P. McMullen and D. Barnette, respectively. A famous conjecture of P. McMullen on the charac­ terization off-vectors of simplicial or simple polytopes dates from the same period; the book ends with a brief discussion of this conjecture and some of its relations to the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. However, the recent proofs that McMullen‘s conditions are both sufficient (L. J. Billera and C. W. Lee, 1980) and necessary (R. P
Pindex Textbook 1983
The information of publication is updating

书目名称An Introduction to Convex Polytopes影响因子(影响力)




书目名称An Introduction to Convex Polytopes影响因子(影响力)学科排名




书目名称An Introduction to Convex Polytopes网络公开度




书目名称An Introduction to Convex Polytopes网络公开度学科排名




书目名称An Introduction to Convex Polytopes被引频次




书目名称An Introduction to Convex Polytopes被引频次学科排名




书目名称An Introduction to Convex Polytopes年度引用




书目名称An Introduction to Convex Polytopes年度引用学科排名




书目名称An Introduction to Convex Polytopes读者反馈




书目名称An Introduction to Convex Polytopes读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:03:54 | 显示全部楼层
发表于 2025-3-22 03:56:06 | 显示全部楼层
发表于 2025-3-22 05:22:34 | 显示全部楼层
发表于 2025-3-22 09:14:07 | 显示全部楼层
Convex Sets,ndence, dimension, and linear mappings. We also assume familiarity with the standard inner product <·, ·> of ℝ., including the induced norm ∥ ∥, and elementary topological notions such as the interior int ., the closure cl ., and the boundary bd . of a subset . of ℝ..
发表于 2025-3-22 13:59:09 | 显示全部楼层
发表于 2025-3-22 17:26:22 | 显示全部楼层
发表于 2025-3-22 21:45:28 | 显示全部楼层
Humor in der Beratung der Sozialen ArbeitConvex polytopes are the .-dimensional analogues of 2-dimensional convexpolygons and 3-dimensional convex polyhedra. The theme of this book isthe combinatorial theory of convex polytopes. Generally speaking, the combinatorialtheory deals with the numbers of faces of various dimensions(vertices, edges, etc.).
发表于 2025-3-23 04:03:31 | 显示全部楼层
发表于 2025-3-23 05:33:46 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 16:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表