用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithmic Learning Theory; 17th International C José L. Balcázar,Philip M. Long,Frank Stephan Conference proceedings 2006 Springer-Verlag

[复制链接]
楼主: Bush
发表于 2025-3-28 17:11:09 | 显示全部楼层
Iterative Learning from Positive Data and Negative Counterexamplesvant models of learnability in the limit, study how our model works for indexed classes of recursive languages, and show that learners in our model can work in . way — never abandoning the first right conjecture.
发表于 2025-3-28 18:47:59 | 显示全部楼层
Leading Strategies in Competitive On-Line Predictiontrategy, in the sense that the loss of any prediction strategy whose norm is not too large is determined by how closely it imitates the leading strategy. This result is extended to the loss functions given by Bregman divergences and by strictly proper scoring rules.
发表于 2025-3-29 02:36:01 | 显示全部楼层
Typische Fehler im Vorstellungsgesprächich then are evaluated with respect to their correctness and wrong predictions (coming from wrong hypotheses) incur some loss on the learner. In the following, a more detailed introduction is given to the five invited talks and then to the regular contributions.
发表于 2025-3-29 05:15:59 | 显示全部楼层
发表于 2025-3-29 09:41:07 | 显示全部楼层
https://doi.org/10.1007/978-3-662-02227-6x-year S&P 500 data set and find that the modified best expert algorithm outperforms the traditional with respect to Sharpe ratio, MV, and accumulated wealth. To our knowledge this paper initiates the investigation of explicit risk considerations in the standard models of worst-case online learning.
发表于 2025-3-29 13:08:17 | 显示全部楼层
发表于 2025-3-29 17:48:24 | 显示全部楼层
发表于 2025-3-29 21:18:01 | 显示全部楼层
Risk-Sensitive Online Learningx-year S&P 500 data set and find that the modified best expert algorithm outperforms the traditional with respect to Sharpe ratio, MV, and accumulated wealth. To our knowledge this paper initiates the investigation of explicit risk considerations in the standard models of worst-case online learning.
发表于 2025-3-30 00:12:50 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/a/image/152983.jpg
发表于 2025-3-30 06:25:22 | 显示全部楼层
https://doi.org/10.1007/11894841Boosting; Support Vector Machine; algorithm; algorithmic learning theory; algorithms; kernel method; learn
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-28 14:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表