找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithmic Learning Theory; 17th International C José L. Balcázar,Philip M. Long,Frank Stephan Conference proceedings 2006 Springer-Verlag

[复制链接]
查看: 19532|回复: 55
发表于 2025-3-21 16:50:16 | 显示全部楼层 |阅读模式
期刊全称Algorithmic Learning Theory
期刊简称17th International C
影响因子2023José L. Balcázar,Philip M. Long,Frank Stephan
视频video
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Algorithmic Learning Theory; 17th International C José L. Balcázar,Philip M. Long,Frank Stephan Conference proceedings 2006 Springer-Verlag
Pindex Conference proceedings 2006
The information of publication is updating

书目名称Algorithmic Learning Theory影响因子(影响力)




书目名称Algorithmic Learning Theory影响因子(影响力)学科排名




书目名称Algorithmic Learning Theory网络公开度




书目名称Algorithmic Learning Theory网络公开度学科排名




书目名称Algorithmic Learning Theory被引频次




书目名称Algorithmic Learning Theory被引频次学科排名




书目名称Algorithmic Learning Theory年度引用




书目名称Algorithmic Learning Theory年度引用学科排名




书目名称Algorithmic Learning Theory读者反馈




书目名称Algorithmic Learning Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:40:17 | 显示全部楼层
发表于 2025-3-22 02:40:53 | 显示全部楼层
e-Science and the Semantic Web: A Symbiotic Relationshipfrastructure that enables this [4]. Scientific progress increasingly depends on pooling know-how and results; making connections between ideas, people, and data; and finding and reusing knowledge and resources generated by others in perhaps unintended ways. It is about harvesting and harnessing the
发表于 2025-3-22 05:49:34 | 显示全部楼层
发表于 2025-3-22 10:43:00 | 显示全部楼层
Data-Driven Discovery Using Probabilistic Hidden Variable Modelsative approach include (a) representing complex stochastic phenomena using the structured language of graphical models, (b) using latent (hidden) variables to make inferences about unobserved phenomena, and (c) leveraging Bayesian ideas for learning and prediction. This talk will begin with a brief
发表于 2025-3-22 13:06:00 | 显示全部楼层
Reinforcement Learning and Apprenticeship Learning for Robotic Controlrn reinforcement learning algorithms. Some of the reasons for these problems being challenging are (i) It can be hard to write down, in closed form, a formal specification of the control task (for example, what is the cost function for “driving well”?), (ii) It is often difficult to learn a good mod
发表于 2025-3-22 17:34:03 | 显示全部楼层
发表于 2025-3-22 21:23:36 | 显示全部楼层
On Exact Learning Halfspaces with Random Consistent Hypothesis Oracleunterexamples received from the equivalence query oracle. We use the RCH oracle to give a new polynomial time algorithm for exact learning halfspaces from majority of halfspaces and show that its query complexity is less (by some constant factor) than the best known algorithm that learns halfspaces
发表于 2025-3-23 04:39:24 | 显示全部楼层
Active Learning in the Non-realizable Caseet function that perfectly classifies all training and test examples. This assumption can hardly ever be justified in practice. In this paper, we study how relaxing the realizability assumption affects the sample complexity of active learning. First, we extend existing results on query learning to s
发表于 2025-3-23 08:33:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 09:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表