找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithmic Learning Theory; 6th International Wo Klaus P. Jantke,Takeshi Shinohara,Thomas Zeugmann Conference proceedings 1995 Springer-Ve

[复制链接]
楼主: 街道
发表于 2025-3-28 15:53:25 | 显示全部楼层
发表于 2025-3-28 19:31:40 | 显示全部楼层
发表于 2025-3-29 02:11:09 | 显示全部楼层
发表于 2025-3-29 05:30:16 | 显示全部楼层
Gründung und Errichtung der Kreditinstituteormulas is learnable with membership, equivalence and subset queries. Moreover, it is shown that under some condition the class of orthogonal .-Horn formulas is learnable with membership and equivalence queries.
发表于 2025-3-29 10:34:49 | 显示全部楼层
发表于 2025-3-29 14:35:27 | 显示全部楼层
„Bankbetrieb“ und „Bankbetriebslehre“above, we obtain probabilistic hierarchies highly structured without a “gap” between the probabilistic and deterministic learning classes. In the case of exact probabilistic learning, we are able to show the probabilistic hierarchy to be dense for every mentioned monotonicity condition. Considering
发表于 2025-3-29 18:50:55 | 显示全部楼层
Learning unions of tree patterns using queries,time PAC-learnability and the polynomial time predictability of .. when membership queries are available. We also show a lower bound . of the number of queries necessary to learn .. using both types of queries. Further, we show that neither types of queries can be eliminated to achieve efficient lea
发表于 2025-3-29 23:31:36 | 显示全部楼层
发表于 2025-3-30 00:29:20 | 显示全部楼层
Machine induction without revolutionary paradigm shifts,nference, it is shown that there are classes learnable . the non-revolutionary constraint (respectively, with severe parsimony), up to (i}+1) mind changes, and no anomalies, which classes cannot be learned with no size constraint, an unbounded, finite number of anomalies in the final program, but wi
发表于 2025-3-30 06:32:32 | 显示全部楼层
Probabilistic language learning under monotonicity constraints,above, we obtain probabilistic hierarchies highly structured without a “gap” between the probabilistic and deterministic learning classes. In the case of exact probabilistic learning, we are able to show the probabilistic hierarchy to be dense for every mentioned monotonicity condition. Considering
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 21:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表