找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithmic Decision Theory; Second International Ronen I. Brafman,Fred S. Roberts,Alexis Tsoukiàs Conference proceedings 2011 Springer-Ver

[复制链接]
楼主: EXERT
发表于 2025-3-26 23:54:22 | 显示全部楼层
发表于 2025-3-27 04:10:20 | 显示全部楼层
发表于 2025-3-27 06:57:51 | 显示全部楼层
发表于 2025-3-27 10:35:25 | 显示全部楼层
发表于 2025-3-27 15:05:15 | 显示全部楼层
Efficiently Eliciting Preferences from a Group of Users,ers, we can use the preferences of the users we have already processed to increase the efficiency of the elicitation process for the remaining users. However, current methods either require strong prior knowledge about the users’ preferences or can be overly cautious and inefficient. Our method, bas
发表于 2025-3-27 18:47:30 | 显示全部楼层
发表于 2025-3-28 00:52:49 | 显示全部楼层
发表于 2025-3-28 04:07:31 | 显示全部楼层
Vote Elicitation with Probabilistic Preference Models: Empirical Estimation and Cost Tradeoffs,rement that participants provide full preference information in the form of a complete ranking of alternatives is a severe impediment to their practical deployment. Only recently have incremental elicitation schemes been proposed that allow winners to be determined with partial preferences; however,
发表于 2025-3-28 08:25:30 | 显示全部楼层
Efficient Approximation Algorithms for Multi-objective Constraint Optimization, optimization. Our approach builds upon recent advances in multi-objective heuristic search over weighted AND/OR search spaces and uses an .-dominance relation between cost vectors to significantly reduce the set of non-dominated solutions. Our empirical evaluation on various benchmarks demonstrates
发表于 2025-3-28 13:35:30 | 显示全部楼层
Empirical Evaluation of Voting Rules with Strictly Ordered Preference Data,rive several million elections (more than all the existing studies combined) from a publicly available data, the Netflix Prize dataset. The Netflix data is derived from millions of Netflix users, who have an incentive to report sincere preferences, unlike random survey takers. We evaluate each of th
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 22:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表