找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithmic Algebraic Combinatorics and Gröbner Bases; Mikhail Klin,Gareth A. Jones,Ilia Ponomarenko Book 2009 Springer-Verlag Berlin Heid

[复制链接]
楼主: Abridge
发表于 2025-3-27 00:22:40 | 显示全部楼层
https://doi.org/10.1007/978-3-658-06532-4In the study of finite geometries one often requires knowledge of the ranks of related (0,1)-incidence matrices. We describe some of the combinatorial questions in finite geometry for which formulas for these ranks are useful; and we describe methods from algebraic geometry that are useful in obtaining such rank formulas.
发表于 2025-3-27 03:24:23 | 显示全部楼层
https://doi.org/10.1007/978-3-319-25757-0In this chapter we introduce the notion of total graph coherent configuration, and use computer tools to investigate it for two classes of strongly regular graphs – the triangular graphs .(.) and the lattice square graphs ..(.). For .(.), we show that its total graph coherent configuration has exceptional mergings only in the cases .=5 and .=7.
发表于 2025-3-27 05:17:55 | 显示全部楼层
Using Gröbner Bases to Investigate Flag Algebras and Association Scheme FusionThis paper is meant primarily as a . on how to phrase problems in association schemes in the language of Gröbner bases and use the computational results provided by those bases, though it does contain fusion scheme computations not previously found in the literature.
发表于 2025-3-27 12:35:26 | 显示全部楼层
A Construction of Designs from ,(2,,) and ,(2,,), ,=1 mod 6, on ,+2 PointsLet .=.(2,.) or .(2,.). We consider the action of . on the projective line together with one additional point, which is fixed by .. Assume .≡1 mod 6 and set.We construct .designs admitting .(2,.) as their automorphisms, if .≡3 mod 4. We also construct .designs admitting .(2,.) as their automorphisms. These designs may not be simple.
发表于 2025-3-27 14:50:05 | 显示全部楼层
发表于 2025-3-27 19:15:48 | 显示全部楼层
发表于 2025-3-28 00:15:17 | 显示全部楼层
Algorithmic Algebraic Combinatorics and Gröbner Bases
发表于 2025-3-28 05:10:28 | 显示全部楼层
发表于 2025-3-28 07:57:40 | 显示全部楼层
发表于 2025-3-28 13:29:57 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 23:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表