找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebraic Modeling of Topological and Computational Structures and Applications; THALES, Athens, Gree Sofia Lambropoulou,Doros Theodorou,Lo

[复制链接]
楼主: Encounter
发表于 2025-3-30 08:47:19 | 显示全部楼层
https://doi.org/10.1007/978-94-011-7520-3int is the knot theory of the solid torus ST and the Lambropoulou invariant, ., for knots and links in ST, the universal analogue of the HOMFLYPT polynomial in ST. The relation between . and . is established in Diamantis et al. (J Knot Theory Ramif, 25:13, 2016, [.]) and it is shown that in order to
发表于 2025-3-30 14:06:14 | 显示全部楼层
发表于 2025-3-30 18:26:33 | 显示全部楼层
发表于 2025-3-31 00:13:00 | 显示全部楼层
H. Pinto,A. Stashans,P. Sanchezen chains and, then, to systems of such chains via the periodic linking and periodic self-linking of chains. These lead to the periodic linking matrix and its associated eigenvalues providing measures of entanglement that can be applied to complex systems. We describe the general one-dimensional cas
发表于 2025-3-31 02:57:00 | 显示全部楼层
Defects in Non-Crystalline Oxidesheight of a knotoid is the minimal crossing distance between the endpoints taken over all equivalent knotoid diagrams. We define two knotoid invariants; the affine index polynomial and the arrow polynomial that were originally defined as virtual knot invariants given in (Kauffman, J Knot Theory Rami
发表于 2025-3-31 07:06:34 | 显示全部楼层
Insulator and Semiconductor SurfacesFourier series allows an approximation by finite Laurent polynomials .(.). We define an algebraic discriminant ., such that an .-braid is given by those .(.) satisfying the condition (.) of having all roots not on the unit circle. We study property (.) from the algebraic and topological viewpoint. U
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 13:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表