找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebraic Modeling of Topological and Computational Structures and Applications; THALES, Athens, Gree Sofia Lambropoulou,Doros Theodorou,Lo

[复制链接]
楼主: Encounter
发表于 2025-3-27 00:01:52 | 显示全部楼层
Defects in Non-Crystalline Oxidesf 21(3), 37, 2012) [.], (Kauffman, J Knot Theory Ramif 22(4), 30, 2013) [.], respectively, but here are described entirely in terms of knotoids in .. We reprise here our results given in (Gügümcü, Kauffman, Eur J Combin 65C, 186–229, 2017) [.] that show that both polynomials give a lower bound for the height of knotoids.
发表于 2025-3-27 05:11:39 | 显示全部楼层
https://doi.org/10.1007/978-94-011-7520-3he construction via the isomorphism, we reduce the number of invariants to study, given the number of connected components of a link. In particular, if the link is a classical link with . components, we show that . invariants generate the whole family.
发表于 2025-3-27 08:02:54 | 显示全部楼层
https://doi.org/10.1007/978-94-011-7520-3, presented in Diamantis and Lambropoulou (J Pure Appl Algebra, 220(2):577–605, 2016, [.]). The solution of this infinite system of equations is very technical and is the subject of a sequel work (Diamantis and Lambropoulou, The HOMFLYPT skein module of the lens spaces .(., 1) via braids, in preparation, [.]).
发表于 2025-3-27 13:15:20 | 显示全部楼层
发表于 2025-3-27 13:39:40 | 显示全部楼层
发表于 2025-3-27 18:09:50 | 显示全部楼层
On the Framization of the Hecke Algebra of Type ,he other one was recently introduced by the author, J. Juyumaya and S. Lambropoulou. The purpose of this paper is to show the main concepts and results of both framizations, giving emphasis to the second one, and to provide a preliminary comparison of the invariants constructed from both framizations.
发表于 2025-3-27 22:04:05 | 显示全部楼层
发表于 2025-3-28 04:36:57 | 显示全部楼层
发表于 2025-3-28 07:15:15 | 显示全部楼层
发表于 2025-3-28 12:21:09 | 显示全部楼层
https://doi.org/10.1007/978-94-011-7520-3We study the algebraic structure and the representation theory of the Yokonuma–Hecke algebra of type ., its generalisations, the affine and cyclotomic Yokonuma–Hecke algebras, and its Temperley–Lieb type quotients, the Yokonuma–Temperley–Lieb algebra, the Framisation of the Temperley–Lieb algebra and the Complex Reflection Temperley–Lieb algebra.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 12:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表