找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebraic K-Theory; V. Srinivas Book 19911st edition Springer Science+Business Media New York 1991 algebra.Algebraic K-theory.K-theory

[复制链接]
楼主: 使入伍
发表于 2025-3-23 12:47:36 | 显示全部楼层
https://doi.org/10.1007/978-3-030-93158-2Let S be an abelian monoid i.e. S has a commutative, associative binary operation with a 2-sided identity. We say that S acts on a set X if there is a homomorphism of monoids S → Hom. (X, X); if s ε S, the corresponding map of sets X → X is called translation by s. We say that S acts . on X if each translation is bijective.
发表于 2025-3-23 14:56:56 | 显示全部楼层
https://doi.org/10.1007/978-3-030-93158-2Let F be a field, F̄ a separable closure of F, G = Gal (F̄/F). Let n>0 be an integer relatively prime to char. F.
发表于 2025-3-23 19:11:32 | 显示全部楼层
发表于 2025-3-23 23:18:59 | 显示全部楼层
发表于 2025-3-24 02:30:41 | 显示全部楼层
The K-Theory of Rings and Schemes,If R is a ring, let . (R) denote the category of finitely generated projective (left) R-modules. This is a full subcategory of the abelian category of left R-modules, so that . (R) is an exact category where all exact sequences are split. We will prove the following result, comparing the plus and Q constructions, in §7.
发表于 2025-3-24 07:07:13 | 显示全部楼层
发表于 2025-3-24 11:31:31 | 显示全部楼层
Comparison of the Plus and Q-Constructions,Let S be an abelian monoid i.e. S has a commutative, associative binary operation with a 2-sided identity. We say that S acts on a set X if there is a homomorphism of monoids S → Hom. (X, X); if s ε S, the corresponding map of sets X → X is called translation by s. We say that S acts . on X if each translation is bijective.
发表于 2025-3-24 17:28:30 | 显示全部楼层
发表于 2025-3-24 22:49:51 | 显示全部楼层
Algebraic K-Theory978-1-4899-6735-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-24 23:37:36 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 00:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表