用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebraic Combinatorics; Walks, Trees, Tablea Richard P. Stanley Textbook 2018Latest edition Springer International Publishing AG, part of

[复制链接]
楼主: 字里行间
发表于 2025-3-28 18:18:27 | 显示全部楼层
Cubes and the Radon Transform,Let us now consider a more interesting example of a graph ., one whose eigenvalues have come up in a variety of applications. Let . denote the cyclic group of order 2, with elements 0 and 1 and group operation being addition modulo 2.
发表于 2025-3-28 22:36:02 | 显示全部楼层
发表于 2025-3-29 00:39:33 | 显示全部楼层
A Glimpse of Young Tableaux,We defined in Chapter . Young’s lattice . , the poset of all partitions of all nonnegative integers, ordered by containment of their Young diagrams.
发表于 2025-3-29 03:19:13 | 显示全部楼层
The Matrix-Tree Theorem,The Matrix-Tree Theorem is a formula for the number of spanning trees of a graph in terms of the determinant of a certain matrix. We begin with the necessary graph-theoretical background. Let . be a finite graph, allowing multiple edges but not loops. (Loops could be allowed, but they turn out to be completely irrelevant.)
发表于 2025-3-29 07:58:33 | 显示全部楼层
A Glimpse of Combinatorial Commutative Algebra,In this chapter we will discuss a profound connection between commutative rings and some combinatorial properties of simplicial complexes. The deepest and most interesting results in this area require a background in algebraic topology and homological algebra beyond the scope of this book.
发表于 2025-3-29 14:38:32 | 显示全部楼层
Richard P. StanleyIncludes a new chapter on combinatorial commutative algebra.First text on algebraic combinatorics targeted towards undergraduates.Written by the most well-known algebraic combinatorist world-wide.Cove
发表于 2025-3-29 16:15:08 | 显示全部楼层
发表于 2025-3-29 23:30:46 | 显示全部楼层
Algebraic Combinatorics978-3-319-77173-1Series ISSN 0172-6056 Series E-ISSN 2197-5604
发表于 2025-3-30 00:54:21 | 显示全部楼层
,Epigenetic Therapy for Alzheimer’s Disease,d elements, such as {1, 1, 3, 4, 4, 4, 6, 6}. We are only concerned with how many times each element occurs and not on any ordering of the elements. Thus for instance {2, 1, 2, 4, 1, 2} and {1, 1, 2, 2, 2, 4} are the same multiset: they each contain two 1’s, three 2’s, and one 4 (and no other elements).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-4 00:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表