找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebraic Coding; First French-Soviet Gérard Cohen,Antoine Lobstein,Simon Litsyn Conference proceedings 1992 Springer-Verlag Berlin Heidel

[复制链接]
楼主: 你太谦虚
发表于 2025-3-25 04:34:40 | 显示全部楼层
发表于 2025-3-25 10:18:08 | 显示全部楼层
发表于 2025-3-25 13:53:28 | 显示全部楼层
Constructions of codes with covering radius 2,Constructions of nonbinary linear codes with covering radius . = 2 are considered. Infinite families of linear .-ary codes with . 2, . ≥ 4, and a table of quaternary linear codes with . = 2, redundancy . ≤ 20, are given.
发表于 2025-3-25 17:54:26 | 显示全部楼层
On perfect weighted coverings with small radius,We extend the results of our previous paper [8] to the nonlinear case: The Lloyd polynomial of the covering has at least . distinct roots among 1,..., ., where . is the covering radius. We investigate . with diameter 1, finding a partial characterization. We complete an investigation begun in [8] on linear . with distance 1 and diameter 2.
发表于 2025-3-25 23:53:42 | 显示全部楼层
发表于 2025-3-26 03:39:07 | 显示全部楼层
Bounds on covering radius of dual product codes,We present some new lower and upper bounds for the covering radius of codes dual to the product of parity check codes.
发表于 2025-3-26 07:41:09 | 显示全部楼层
发表于 2025-3-26 08:32:26 | 显示全部楼层
Saddle point techniques in asymptotic coding theory,We use asymptotic estimates on coefficients of generating functions to derive anew the asymptotic behaviour of the volume of Hamming spheres and Lee spheres for small alphabets. We then derive the asymptotic volume of Lee spheres for large alphabets, and an asymptotic relation between the covering radius and the dual distance of binary codes.
发表于 2025-3-26 13:39:34 | 显示全部楼层
发表于 2025-3-26 20:39:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 17:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表